leanCoP 2.0 and ileanCoP 1.2:
High Performance Lean Theorem Proving
in Classical and Intuitionistic Logic
(System Descriptions)

Jens Otten

Institut fir Informatik, University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany
jeotten@cs.uni-potsdam.de

Abstract. leanCoP is a very compact theorem prover for classical first-
order logic, based on the connection (tableau) calculus and implemented
in Prolog. leanCoP 2.0 enhances leanCoP 1.0 by adding regularity, lem-
mata, and a technique for restricting backtracking. It also provides a
definitional translation into clausal form and integrates “Prolog technol-
ogy” into a lean theorem prover. ileanCoP is a compact theorem prover
for intuitionistic first-order logic and based on the clausal connection
calculus for intuitionistic logic. ileanCoP 1.2 extends the classical prover
leanCoP 2.0 by adding prefixes and a prefix unification algorithm. We
present details of both implementations and evaluate their performance.

1 Introduction

Connection calculi, such as the connection calculus [3, 4], the connection tableau
calculus [8,9], and the model elimination calculus [10], are well known for their
goal-oriented proof search. Several implementations that are based on these cal-
culi have been developed, for example KoMeT [5], METEOR [1], PTTP [22],
SETHEO (7], and leanCoP [16].

leanCoP is an automated theorem prover for classical first-order logic. It is
a very compact Prolog implementation of the connection calculus. leanCoP 2.0
enhances leanCoP 1.0 [16] by adding regularity, lemmata, and a technique to re-
strict backtracking [15]. In contrast to leanCoP 1.0, the input clauses are stored
in Prolog’s, database, which makes it possible to use Prolog’s built-in index-
ing mechanism. Furthermore leanCoP 2.0 provides a definitional translation into
clausal form and uses a fixed strategy scheduling.

ileanCoP is an automated theorem prover for intuitionistic first-order logic
and is based on the clausal connection calculus for intuitionistic logic [14]. It
extends leanCoP by adding a prefix to each literal and a prefix unification algo-
rithm [17]. ileanCoP 1.2 enhances ileanCoP 1.0 by integrating the new inference
rules and techniques of leanCoP 2.0.

Details of the architecture and the implementation of both leanCoP 2.0 and
ileanCoP 1.2 are presented in Section 2 and Section 3, respectively. We also
present performance results on the TPTP library and the MPTP challenge.

2 leanCoP 2.0 for Classical Logic

We first describe the new search techniques of leanCoP 2.0 and provide details
of the source code, before presenting some performance results.

2.1 Architecture

leanCoP [16] is based on the clausal connection (tableau) calculus [4,9]. A deriva-
tion for a formula in clausal form is generated by first applying the start rule and
then repeatedly applying the reduction or the extension rule. In each inference
step a connection is identified along an active path. Iterative deepening on the
length of the active path is performed. The following techniques are the main
improvements of leanCoP 2.0 compared to leanCoP 1.0 [16]:

1. Lean Prolog technology: For all input clauses C' and LeC of the given formula
the fact 1it(L,C1,Grnd) is stored in Prolog’s database, where C1=C\{L}
is a list and Grnd is g iff C is ground and n otherwise. Atoms are repre-
sented by Prolog atoms, negation is represented by “~”. This new technique
integrates the main advantage of the ”Prolog technology” approach [22] by
using Prolog’s fast indexing mechanism to quickly find connections [15].

2. Controlled iterative deepening: Iterative deepening is aborted if the current
limit for the length of the active path is not exceeded during the proof search.

3. Definitional clausal form translation: Formulae that are not in clausal form
are translated into clausal form by introducing definitions for certain subfor-
mulae. In contrast to approaches for saturation-based calculi, our definitional
translation is designed to work well with connection calculi [15].

4. Regularity: The proof search is restricted to proofs where no literal occurs
more than once in the (currently investigated) active path [9].

5. Lemmata: A branch with a literal L that has already been closed can be
reused to close other branches (below/to the right of L) that contain L [9].

6. Restricted backtracking: Once the application of the reduction or extension
rule has successfully closed a branch by an appropriate connection, all alter-
native connections are cut off (on backtracking). Furthermore, alternative
start clauses of the start rule are cut off (on backtracking). This new tech-
nique improves performance significantly, in particular for formulae contain-
ing many axioms, e.g. equality axioms [15].

7. Strategy scheduling: A list of settings is used to control the proof search (see
below). The core Prolog prover is consecutively invoked by a shell script with
different settings.

The minimal source code of the core prover is shown in Figure 1. It is invoked
with prove(1,8) where S is a list of settings. The predicate succeeds iff there is
a connection proof for the clauses stored in Prolog’s database.! The full source
code of the core prover and of the definitional clausal form translation is available
on the leanCoP website. A detailed explanation of the source code, the underlying
calculus and the new proof search techniques can be found in [15].

! Sound unification has to be switched on. In ECLiPSe Prolog this is done with
set_flag(occur_check,on).

prove(I,S) :- \+member(scut,S) -> prove([-(#)]1,[]1,I,[1,9) ;
1it(#,C,_) -> prove(C,[-(#)]1,I,[1,9).

prove(I,S) :- member(comp(L),S), I=L -> prove(1,[]) ;
(member (comp(_),S) ;retract(p)) -> J is I+1, prove(J,S).

prove([l,_,_,_,.).

prove([L|C],P,I,Q,S) :- \+ (member(4,[L|C]), member(B,P),
A==B), (-N=L;-L=N) -> (member(D,Q), L==D ;
member (E,P), unify_with_occurs_check(E,N) ; 1it(N,F,H),
(H=g -> true ; length(P,K), K<I -> true ;
\+p -> assert(p), fail), prove(F,[L|P],I,Q,S)),
(member (cut,S) -> ! ; true), prove(C,P,I,[LI|Q],S).

Fig. 1. The source code of the leanCoP 2.0 core prover

The list S of settings can contain one or more of the following options:

1. nodef/def: The standard/definitional translation into clausal form is done.
If none of these options is given the standard translation is used for the
axioms whereas the definitional translation is used for the conjecture.

2. conj: The special literal # is added to the conjecture clauses in order to
mark them as possible start clauses. If this option is not given the literal #
is added to all positive clauses to mark them as possible start clauses.

3. reo(I): After the clausal form translation the clauses are reordered I times
using a simple perfect shuffle algorithm.

4. scut: Backtracking is restricted for alternative start clauses.

. cut: Backtracking is restricted for alternative reduction/extension steps.

6. comp(I): Restricted backtracking is switched off when iterative deepening
exceeds the active path length I.

ot

Note that the option conj is complete only for formulae with a provable con-
jecture, and scut as well as cut are complete only if used in combination with
comp (I). leanCoP 2.0 uses a fixed strategy scheduling that preserves complete-
ness. The controlled iterative deepening yields a decision procedure for ground
(e.g. propositional) formulae, and refutes some (invalid) first-order formulae.

2.2 Performance

leanCoP 2.0 was tested on all 3644 problems in non-clausal form (FOF division)
of version 3.3.0 of the TPTP library [24]. Problems that do not have a conjec-
ture are negated. These are exactly those problems that are either satisfiable
or unsatisfiable. Equality is dealt with by adding the equality axioms. All tests
were performed on a 3 GHz Xeon system running Linux 2.6 and ECLiPSe Prolog
version 5.8. The time limit was set to 600 seconds.

In Table 1 the performance of leanCoP 2.0 is compared with the performance
of leanTAP 2.3 (the first popular lean prover) [2], leanCoP 1.0 [16], SETHEO 3.3

(likely the fastest connection tableau prover so far)? [7], Otter 3.3 (which com-
monly serves as the standard benchmark) [11] and version ”Dec-2007” of Prover9
(the successor of Otter)3 [12]. The rating and the percentage of proved problems
for some rating intervals are given. FNE, FEQ and PEQ are problems with-
out, with and containing only equality, respectively. Furthermore, the number of
proved problems for each domain (see [24]) that contains at least ten problems
is shown. The number of problems that are refuted, result in a time out or error,
e.g. stack overflow or empty set-of-support, are listed in the last three lines.

Table 1. Performance of leanCoP 2.0 on the TPTP library

| [leanTAP [leanCoP 1.0l SETHEO | Otter [leanCoP 2.0[Prover9 |

proved 375 1004 1192 1310 1638 1677
(%) 10% 28% 33% 36% 45% 46%

Os to 1s 351 787 864 987 1124 1281
1s to 10s 12 84 205 183 123 197
10s to 100s 11 74 62 106 193 141
100s to 600s 1 59 61 34 198 58
rating 0.0 194 397 435 455 450 464
rating >0.0 181 607 757 855 1188 1213
rating 1.0 0 0 2 7 13 8
0.00...0.24 22.8 % 56.2 % 63.9 % 72.2 % 1.7 % 72.8 %
0.25...0.49 5.9 % 26.0 % 34.2 % 39.7 % 48.2 % 69.9 %
0.50...0.74 2.2 % 71 % 8.5 % 3.0% 35.9 % 28.2 %
0.75...1.00 0.4 % 0.0 % 1.5 % 0.7% 11.2 % 2.5 %
FNE 290 448 467 475 491 525
FEQ 85 556 725 835 1147 1152
PEQ 12 13 13 47 30 71
AGT 0 17 17 16 29 17
ALG 11 13 17 60 32 83
CSR 0 1 3 3 2 27
GEO 23 143 159 160 171 171
GRA 0 4 6 5 6 1
KRS 16 70 89 106 105 103
LCL 3 26 32 18 24 48
MED 0 0 1 5 7 1
MGT 11 31 41 54 45 62
NLP 4 3 7 6 13 13
NUM 1 35 59 31 70 49
PUZ 2 5 6 6 6 6
SET 25 170 197 229 339 276
SEU 5 125 124 149 296 259
SWC 14 14 65 84 87 101
SWV 55 142 154 157 177 183
SYN 201 199 205 210 217 267
refuted 0 1 27 0 33 0
time out 2979 2538 2134 700 1949 668
error 290 101 291 1634 24 1299

2 For SETHEO the options -dr -reg -st were used, which showed the best performance.
3 The most recent version ”2008-04A” of Prover9 has a significant lower performance.

leanCoP 2.0 proves significantly more problems of the TPTP library than,
e.g., Otter or SETHEOQO. The biggest improvement is made for problems with
equality and problems that are rated as difficult, i.e. that have a high rating.

The MPTP challenge is a set of problems from the Mizar library translated
into first-order logic [25]. The results of leanCoP 2.0 on the 252 “chainy” prob-
lems, in which irrelevant axioms and lemmata are not excluded, are shown in
Table 2. leanCoP 2.0 deals with equality by adding the equality axioms. The
resulting formulae contain up to 1700 axioms. Again the results are compared
with leanTAP 2.3, Otter 3.3, SETHEO 3.3, leanCoP 1.0 and version ”Dec-2007"
of Prover9. All tests were performed on a 3 GHz Xeon system running Linux.
leanCoP 2.0 solves significant more problem than all other listed systems.

Table 2. Performance of leanCoP 2.0 on the MPTP challenge (chainy)

| H leanTAP [SETHEO[Otter [IeanCoP 1.0[Prover9 [IeanCoP 2.0‘

proved 0 27 29 33 52 88
(%] 0% 11% 12% 13% 21% 35%

0s to 1s 0 15 17 14 33 38
1s to 10s 0 5 7 3 8 21
10s to 100s 0 6 5 11 6 23
100s to 300s 0 1 0 5 5 6
time out 252 225 150 219 101 164
error 0 0 73 0 99 0

leanCoP 2.0 participated in the FOF division of CASC-21, the CADE system
competition. It solved more problems than four other (classical) provers, includ-
ing Otter, and won the “Best Newcomer” award [23]. It solved four problems
that the winning prover did not solve within the time limit of 360 seconds.

3 ileanCoP 1.2 for Intuitionistic Logic

We first provide details of the architecture and the source code of ileanCoP 1.2,
before presenting performance results.

3.1 Architecture

ileanCoP is based on the clausal connection calculus for intuitionistic first-order
logic [14]. It uses the classical search engine of leanCoP and an additional prefix
unification algorithm [17] to unify the prefixes of the literals in every connection.
This ensures that the characteristics of intuitionistic logic are respected and the
given formula is intuitionistically valid (see also [6,27, 28]).

ileanCoP 1.2 integrates all additional inference rules and search techniques
of leanCoP 2.0 mentioned in Section 2.1. Like for the classical prover the input
clauses are stored in Prolog’s database: the fact 1it(L:Pre,C1,Grnd) is stored

for all input clauses C' and literals LeC', where Pre is the prefix of L, C1=C\{L}
is a list of literals, Grnd is g iff C' is ground and n otherwise.

The main part of the minimal source code is shown in Figure 2. The un-
derlined text was added to the source code of leanCoP 2.0 in Figure 1; no
other changes were done. The prefix unification algorithm (check_addco and
prefix_unify) requires another 26 lines of Prolog code (see [17,13] for details).
The full source code is available on the leanCoP website.

prove(I,S) :- (\+member(scut,S) ->
prove([(-(#)):(-[1D]1,(1,1,01,[Z,T],S) ;
1it((#):_,G:C,_) -> prove(C,[(-(#)):(-[D],1,[],[Z,R],S),
append(R,G,T)), check_addco(T), prefix_unify(Z).
prove(I,S) :- member(comp(L),S), I=L -> prove(l,[]) ;
(member (comp(_),S) ;retract(p)) -> J is I+1, prove(J,S).
prove([1,_,_,_,[00,011,.).
prove([L:UIC],P,I,Q,[Z,T],S) :- \+ (member(A,[L:U|C]), member(B,P),
A==B), (-N=L;-L=N) -> (member(D,Q), L:U==D, X=[1, 0=[] ;
member (E:V,P), unify_with_occurs_check(E,N)L
\+ \+ prefix_unify([U=V]), X=[U=V], 0=[] ;
1it(N:V,M:F,H), \+ \+ prefix_unify([U=V]),
(H=g -> true ; length(P,K), K<I -> true ;
\+p -> assert(p), fail), prove(F,[L:UIP],I,Q,[W,R],S),
X=[U=VIW], append(R,M,0)), (member(cut,S) -> ! ; true),
prove(C,P,I,[L:U|Q],[Y,J],S), append(X,Y,Z), append(J,0,T).

Fig. 2. The source code of the ileanCoP 1.2 core prover

Like the classical prover it is invoked with prove(1,S) where S is a list of
settings (see Section 2.1). The predicate succeeds iff there is an intuitionistic
connection proof for the clauses stored in Prolog’s database.

3.2 Performance

ileanCoP 1.2 was tested on all 3644 problems in non-clausal form (FOF division)
of version 3.3.0 of the TPTP library [24]. Formulae F that do not have a con-
jecture are translated to F’=_1. Equality is dealt with by adding the equality
axioms. All tests were performed on a 3 GHz Xeon system running Linux 2.6
and ECLiPSe Prolog version 5.8. The time limit was set to 600 seconds.

In Table 3 the performance of ileanCoP 1.2 on the TPTP library is compared
with all currently existing systems for intuitionistic first-order logic: JProver [21],
the Prolog and C versions of ft [20], ileanTAP [13], ileanSeP* and ileanCoP 1.0
[14].5 The figures for domains that contain at least 10 proved problems are shown.

4 See http://www.leancop.de/ileansep/.
® The intuitionistic version of the Gandalf prover [26] is not included since it is neither
complete nor sound (see the website of the ILTP library [19]).

Table 3. Performance of ileanCoP 1.2 on the TPTP library

JProver | ileanTAP | ft 1.23 ft 1.23 | ileanSeP | ileanCoP |ileanCoP

11-2005 1.17 (C) (Prolog) 1.0 1.0 1.2
proved 186 255 262 278 303 733 1127
(%] 5% 7% 7% 8% 8% 20% 31%
Osto 1s 171 248 258 246 208 543 750
1s to 10s 6 3 2 27 52 72 80
10s to 100s 6 1 2 0 29 73 96
100s to 600s 3 3 0 5 14 45 201
rating 0.0 147 142 156 174 160 331 397
rating >0.0 39 113 106 104 143 402 730
0.00...0.24 131 % | 1563 %| 161 %| 17.0%| 17.1%| 40.5%| 54.5 %
0.25...0.49 0.4 % 4.5 % 5.0 % 5.8 % 9.1%| 209 %| 34.1 %
0.50...0.74 0.0 % 1.2 % 0.2 % 0.0 % 0.0 % 4.0 %| 20.2 %
0.75...1.00 0.0 % 0.3 % 0.2 % 0.0 % 0.0 % 00%| 2.3%
FNE 180 175 194 209 178 312 371
FEQ 6 80 68 69 125 421 756
PEQ 5 6 4 2 1 8 19
AGT 0 0 2 2 5 13 18
ALG 4 6 2 0 0 7 15
GEO 1 8 7 29 36 132 154
KRS 33 19 26 26 18 42 94
LCL 0 1 1 0 0 22 22
MGT 7 6 7 9 0 24 30
NLP 7 11 7 7 3 3 11
NUM 0 2 1 0 1 30 58
SET 18 32 29 24 32 120 222
SEU 2 7 10 10 10 83 200
SWV 1 51 46 54 89 135 162
SYN 108 106 115 110 105 107 121
refuted 4 4 15 0 4 73 71
time out 2931 3344 852 2993 3161 2732 2355
error 523 41 2515 373 176 106 91

Table 4. Performance of ileanCoP 1.2 on the MPTP challenge (chainy)

JProver |ileanTAP | ft 1.23 | ft 1.23 | ileanSeP |ileanCoP |ileanCoP

11-2005 1.17 (Prolog) (©) 1.0 1.0 1.2
proved 0 0 0 1 2 19 61
(%] 0% 0% 0% <1% <1% 8% 24%
Os to 1s 0 0 0 1 0 4 24
1s to 10s 0 0 0 0 0 6 20
10s to 100s 0 0 0 0 2 4 14
100s to 300s 0 0 0 0 0 5 3
time out 235 252 58 9 250 233 191
error 17 0 194 242 0 0 0

The results of ileanCoP 1.2 on the 252 “chainy” problems of the MPTP chal-
lenge (see Section 2.2) are shown in Table 4.

ileanCoP 1.2 proves significantly more problems of the TPTP library and the
MPTP challenge than any of the other systems. It even proves more problems of
the AGT and NUM domain and of the MPTP challenge than Prover9, though
intuitionistic logic is considered more difficult than classical logic and not all of
those problems that are classical theorems are valid in intuitionistic logic.

4 Conclusion

We have presented leanCoP 2.0 and ileanCoP 1.2, theorem provers for classical
and intuitionistic first-order logic. leanCoP 2.0 uses a few selected (well-known
and new) empirical successful techniques for pruning the search space in con-
nection calculi. By adding a prefix unification algorithm it is turned into the
intuitionistic prover ileanCoP 1.2. Performance of both provers is in particular
good for problems that contain equality or a large number of axioms. ileanCoP 1.2
achieves a performance that can even compete with some classical provers.

randoCoP [18] is an extension of leanCoP 2.0 and randomly reorders the ax-
ioms and literals of the given formula. It compensates for the drawback of re-
stricted backtracking, which might narrow the search space too much. Repeat-
edly applying this reordering technique improves performance significantly.

Future work include the integration of further proof search techniques and
the adaption to other non-classical logics, like some first-order modal logics [6].

The complete source code of leanCoP 2.0 and ileanCoP 1.2 together with more
information is available at http://www.leancop.de.

Acknowledgements. Thomas Raths contributed to the development of both
leanCoP 2.0 and ileanCoP 1.2 by running comprehensive benchmark tests on sev-
eral problem libraries. Geoff Sutcliffe kindly provided the SETHEO system.

References

1. Astrachan, O., Loveland, D.: METEORs: High Performance Theorem Provers Us-
ing Model Elimination. In: Bledsoe, W. W., Boyer, S. (eds.) Automated Reasoning:
Essays in Honor of Woody Bledsoe, pp. 31-60. Kluwer, Amsterdam (1991).

2. Beckert, B., Posegga, J.: leanTAP: Lean Tableau-Based Theorem Proving. In:
Bundy, A. (ed.) CADE-12. LNAI, vol. 814, pp. 793-797. Springer, Heidelberg
(1994).

3. Bibel, W.: Matings in Matrices. Commun. ACM 26, 844-852 (1983).

4. Bibel, W.: Automated Theorem Proving. Vieweg, Wiesbaden (1987).

5. Bibel, W., Briining, S., Egly, U., Rath, T.: KoMeT. In: Bundy, A. (ed.) CADE-12.
LNAI, vol. 814, pp. 783-787. Springer, Heidelberg (1994).

6. Kreitz, C., Otten, J.: Connection-based Theorem Proving in Classical and Non-
classical Logics. Journal of Universal Computer Science 5, 88112 (1999).

7. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: A High-Performance
Theorem Prover. Journal of Automated Reasoning 8, 183—212 (1992).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Letz, R., Mayr, K., Goller, C.: Controlled Integration of the Cut Rule into Con-
nection Tableaux Calculi. Journal of Automated Reasoning 13, 297-337 (1994).
Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015—
2114. Elsevier, Amsterdam (2001).

Loveland, D.: Mechanical Theorem-Proving by Model Elimination. Journal of the
ACM 15, 236-251 (1968).

McCune, W.: Otter 3.0 Reference Manual and Guide. Technical report ANL-94/6,
Argonne National Laboratory (1994).

McCune, W.: Release of Prover9. Mile High Conference on Quasigroups, Loops
and Nonassociative Systems, Technical report, Denver (2005).

Otten, J.: ileanTAP: An Intuitionistic Theorem Prover. In: Galmiche, D. (ed.)
TABLEAUX ’97. LNAI, vol. 1227, pp. 307-312. Springer, Heidelberg (1997).
Otten, J.: Clausal Connection-Based Theorem Proving in Intuitionistic First-Order
Logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNAI, vol. 3702, pp. 245-261.
Springer, Heidelberg (2005).

Otten, J.: Restricting Backtracking in Connection Calculi. Technical report, In-
stitut fiir Informatik, University of Potsdam (2008).

Otten, J., Bibel, W.: leanCoP: Lean Connection-based Theorem Proving. Journal
of Symbolic Computation 36, 139-161 (2003).

Otten, J., Kreitz, C.: T-String-Unification: Unifying Prefixes in Non-classical
Proof Methods. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.)
TABLEAUX ’96. LNAI vol. 1071, pp. 244-260. Springer, Heidelberg (1996).
Raths, T., Otten, J.: randoCoP: Randomizing the Proof Search Order in the Con-
nection Calculus. Technical report, Institut fiir Informatik, University of Potsdam
(2008).

Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic.
Journal of Automated Reasoning 38, 261-271 (2007).

Sahlin, D., Franzen, T., Haridi, S.: An Intuitionistic Predicate Logic Theorem
Prover. Journal of Logic and Computation 2, 619-656 (1992).

Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: Integrating Connection-
based Theorem Proving into Interactive Proof Assistants. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001 . LNAI, vol. 2083, pp. 421-426. Springer, Heidelberg
(2001).

Stickel, M.: A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler. Journal of Automated Reasoning 4, 353—-380 (1988).

Sutcliffe, G.: The CADE-21 Automated Theorem Proving System Competition.
Al Communications 21, 71-81 (2008).

Sutcliffe, G., Suttner, C.: The TPTP Problem Library. Journal of Automated
Reasoning 21: 177-203 (1998).

Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal
of Automated Reasoning 37, 21-43 (2006).

Tammet, T.: A Resolution Theorem Prover for Intuitionistic Logic. In: McRobbie,
M., Slaney, J. (eds.) CADE-13. LNAI, vol. 1104, pp. 2-16. Springer, Heidelberg
(1996).

Waaler, A.: Connections in Nonclassical Logics. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 1487-1578. Elsevier, Amsterdam
(2001).

Wallen, L.: Automated Deduction in Nonclassical Logics. MIT Press, Cambridge
(1990).

