
leanCoP: Lean Connection-Based

Theorem Proving

Jens Otten Wolfgang Bibel

Fachgebiet Intellektik, Fachbereich Informatik
Darmstadt University of Technology

Alexanderstr. 10, 64283 Darmstadt, Germany
{jeotten,bibel}@informatik.tu-darmstadt.de

Abstract. The Prolog program

"prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
append(Q,R,S), prove([!],[[-!|C]|S],[],I).
prove([],_,_,_).
prove([L|C],M,P,I) :- (-N=L; -L=N) -> (member(N,P);
append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)."

implements a theorem prover for classical first-order (clausal) logic which
is based on the connection calculus. It is sound, complete (if one more
line is added), and demonstrates a comparatively strong performance.

1 Introduction

The connection calculus [4–6], the connection tableau calculus [10] and the sim-
ilar model elimination calculus [11] are popular and successful proof procedures
because of their goal-oriented search strategy. Proof systems based on one of
these approaches, e.g. [7,9,15,2] to name a few, have shown to be an appropriate
basis to automate formal reasoning in first-order logic.

The Prolog program shown in the abstract has been developed in the con-
text of a graduate course about “Automated Deduction”. Its main purpose was
to demonstrate a small and easy to use implementation of the (clausal) con-
nection calculus which can easily be understood and modified by the students
themselves. It turned out that the implementation is not only very compact but
also shows a surprisingly good performance. Our prover even finds proofs for
problems which cannot be solved by current state-of-the-art theorem provers.
Thus our prover follows the tradition of lean theorem proving , giving lean yet
efficient code, as already demonstrated with programs like e.g. leanTAP [3] and
Satchmo [13].

In the rest of this paper we will explain the source code (in a more readable
form) and present some performance results achieved with our prover on the
problems contained in the TPTP library [18]. The source code of leanCoP can
be obtained at http://www.intellektik.informatik.tu-darmstadt.de/∼jeotten/leancop .

2 The Program

Our prover is based on the connection calculus [4–6] which is a proof procedure
for (full) first-order clause logic. It starts by first selecting a start clause before
extension steps and reduction steps are repeatedly applied. Whereas the exten-
sion step connects a subgoal literal to a negated literal of a new clause, the reduc-
tion step connects it to a negated literal of the so-called active path. The exten-
sion step actually realizes the goal-oriented proof search. This approach can also
be considered as constructing a connection tableaux [10] where open subgoals
are selected in a depth-first way. To prove a formula we first need to translate the
given first-order formula into a set of clauses. We use the positive representation,
i.e. we prove a formula in disjunctive normal form which is equivalent to refut-
ing its negation in conjunctive normal form. Consider for example the formula
(∃X(p⇒f(X)) ∧ ∃X(f(X)⇒p)) ⇒ ∃X(p⇔f(X)) (problem SYN051-1 in [18])
which can be translated to (p∧¬f(a))∨ (f(b)∧¬p)∨ (p∧f(X))∨ (¬p∧¬f(X))
represented by the clause set {{p,¬f(a)}, {f(b),¬p}, {p, f(X)}, {¬p,¬f(X)}}.

We will use Prolog lists to represent sets, Prolog atoms to represent atomic
formulas and “-” to represent the negation “¬”. Thus the above clause set is rep-
resented by the Prolog list [[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]].
We use the Prolog predicates prove/2 and prove/4 to implement our prover.

prove(Mat,PathLim)

succeeds if there is a connection proof for the clause set Mat, the so-called matrix ,
of a formula F , whose active path lengths are limited by PathLim.

prove(Mat,PathLim) :-

append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),

append(MatA,MatB,Mat1),

prove([!],[[-!|Cla]|Mat1],[],PathLim).

A start clause Cla is selected by the (built-in) predicate append. Usually
append is used to append two lists, e.g. append([a],[b,c],L) yields L=[a,b,c].
If the first two arguments are uninstantiated, all possible solutions for them are
given on backtracking. For example append(A,[X|B],[a,b,c]),append(A,B,C)

will produce the three solutions X=a,C=[b,c], X=b,C=[a,c], and X=c,C=[a,b].
It realizes an easy way to successively select an element from a list, returning
the list without this element. Since it is sufficient to consider only positive start
clauses, we will only select clauses Cla without literals of the form ¬q (i.e.
\+member(-_,Cla) succeeds). Afterwards the predicate which realizes exten-
sion and reduction step is called. We start the proof search with the subgoal
containing only the special literal “!” (which should not occur in Mat) and add
the literal “¬!” (which will be used for the first extension step) to the original
start clause. This kind of initial step is essential since otherwise no copies of the
start clause are made (which might be necessary in some cases).1

1 Starting with prove(Cla,Mat1,[],PathLim) instead results in incompleteness.

prove(Cla,Mat,Path,PathLim)

succeeds if there is a proof for the clause of open subgoals Cla using the clauses
in Mat and the active Path where the active path length is limited by PathLim.

prove([],_,_,_).

If the clause of open subgoals is empty, we do not have to perform any
further search. Otherwise the second clause of the predicate prove/4 matches.

prove([Lit|Cla],Mat,Path,PathLim) :-

(-NegLit=Lit;-Lit=NegLit) ->

(member(NegLit,Path);

append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),

append(ClaA,[NegLit|ClaB],Cla2),append(ClaA,ClaB,Cla3),

(Cla1==Cla2 -> append(MatB,MatA,Mat1);

length(Path,K), K<PathLim,

append(MatB,[Cla1|MatA],Mat1)

), prove(Cla3,Mat1,[Lit|Path],PathLim)

), prove(Cla,Mat,Path,PathLim).

Now we try to find a solution for the literal Lit from the open subgoals. After
NegLit is bound to the negation of Lit, it is checked whether an application of a
reduction step is possible, i.e. if NegLit is an element of Path, using the (built-
in) predicate member. For this sound unification has to be used.2 If a reduction
step is performed we skip to the last line where prove/4 is called to find solutions
for the remaining subgoals in Cla. Otherwise an extension step is performed
which will first select a clause Cla1 from Mat using append as explained before. A
copy Cla2 of the clause Cla1 is made (where all variables in Cla2 are renamed)3

using the (built-in) predicate copy_term and an element of Cla2 which unifies
with NegLit is selected (using again our “append-technique”). Again sound
unification has to be used for unifying NegLit with an element of Cla2. Cla3 is
bound to the remaining literals in Cla2.

If the clauses Cla1 and Cla2 are identical, i.e. do not contain any variables,
Mat1 is bound to the remaining Clauses in Mat (without the clause Cla1). Oth-
erwise the clause Cla1 is included in the set Mat1, after it has been checked
that the length K of the active Path does not exceed the limit PathLim (which
is necessary to achieve completeness).4 Afterwards prove/4 is called to find so-
lutions for the new clause of open subgoals Cla3, where Lit has been added to
Path, and for the remaining open subgoals in Cla.

If the following clause is added after the first clause of prove/2

2 In eclipse Prolog sound unification is switched on with set flag(occur check,on).
3 Hence it is not necessary for the set of input clauses to have disjoint variables.
4 Goal1 -> Goal2 ; Goal3 implements the if-then-else construct in Prolog. It suc-

ceeds if either Goal1 succeeds and then Goal2 succeeds or else if Goal1 fails, and
then Goal3 succeeds.

prove(Mat,PathLim) :-

nonground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

iterative deepening on the proof search depth (i.e. the length of the active path)
is performed yielding completeness for first-order logic. The (built-in) predicate
nonground(Mat) succeeds if Mat does contain at least one (first-order) variable.5

It fails if the set of input clauses Mat does not contain any variable, thus yielding
a decision procedure for propositional logic.

3 Performance

We have tested leanCoP on all valid (i.e. unsatisfiable) first-order problems in
clause form and all propositional problems in clause form contained in the cur-
rent version 2.3.0 of the TPTP library (see also [18]). No reordering of clauses
has been done. When transforming the formulas into an appropriate input for-
mat we translated literals of the form ++q into -q and --q into q, respectively,
since we use a positive representation.

The tests were performed on a SUN Ultra10 with 128 Mbytes memory using
eclipse Prolog version 3.5.2. When compiling leanCoP the generation of debug
information has been switched off using “nodbgcomp”. The time limit for all
proof attempts was 60 seconds.

number of all tested problems problems solved by leanCoP (within 60 seconds)
386 within 0 to 1 second

2200 (100%) 667 (30.3%) 187 within 1 to 10 seconds
94 within 10 to 60 seconds

Table 1. Overall performance of leanCoP on the TPTP library

Even though a lot of the problems are rather hard, leanCoP was able to solve
667 (=30.3%) problems, 386 of them in less than one second (see Table 1). In
the TPTP library the difficulty of each problem is rated from 0.0 to 1.0 relative
to state-of-the-art theorem provers, where 0.0 means that all state-of-the-art
provers can solve the problem and 1.0 means that no state-of-the-art prover can
solve it. leanCoP was able to solve 48 problems rated higher than 0.0. They are
compiled in Table 2. For each of these problems its name and rating is given as
well as the timings (in seconds) of Otter 3.1 (see also [14]) and leanCoP. The
timings of Otter are taken from [1].

Surprisingly there are 31 problems which Otter cannot solve (“>300” or
“set of support empty” in Table 2) within 300 seconds on a 400 MHz Linux
machine (which should be slightly faster than our machine). Most of them are
within the Field Theory domain (FLD) and the Planning domain (PLA). Alto-
gether Otter is able to solve 1602 (=72.8%) out of the tested 2200 problems.

5 In some Prolog dialects \+ground(Mat) has to be used for this purpose instead.

Problem Rating Otter leanCoP

BOO012-1 (0.17) 3 30.63

CAT003-2 (0.50) >300 39.07
CAT003-3 (0.11) >300 7.42
CAT012-4 (0.17) 1 50.54

FLD013-1 (0.67) >300 1.49
FLD023-1 (0.33) >300 1.84
FLD025-1 (0.67) >300 1.44
FLD030-1 (0.33) 1 0.10
FLD030-2 (0.33) >300 1.40
FLD037-1 (0.33) >300 4.96
FLD060-1 (0.67) >300 1.78
FLD061-1 (0.67) >300 2.10
FLD067-1 (0.33) >300 4.43
FLD070-1 (0.33) >300 7.71
FLD071-3 (0.33) 2 1.13

GRP008-1 (0.22) 1 2.62

LCL045-1 (0.20) 119 2.10
LCL097-1 (0.20) 1 0.87
LCL111-1 (0.20) 1 0.30
LCL130-1 (0.20) 1 0.04
LCL195-1 (0.20) sos-empty 32.28

NUM283-1.005 (0.20) 1 0.55

PLA004-1 (0.40) >300 13.59
PLA004-2 (0.40) >300 20.54

Problem Rating Otter leanCoP

PLA005-1 (0.40) >300 1.54
PLA005-2 (0.40) >300 0.37
PLA007-1 (0.40) >300 0.50
PLA009-1 (0.40) >300 0.20
PLA009-2 (0.40) >300 7.30
PLA011-1 (0.40) >300 0.51
PLA011-2 (0.40) >300 1.56
PLA013-1 (0.40) >300 0.85
PLA014-1 (0.40) >300 7.20
PLA014-2 (0.40) >300 7.49
PLA016-1 (0.40) >300 0.23
PLA019-1 (0.40) >300 0.22
PLA021-1 (0.40) >300 0.64
PLA022-1 (0.40) >300 1.33
PLA022-2 (0.40) >300 0.09

PUZ034-1.004 (0.67) sos-empty 40.53

RNG006-2 (0.20) 5 1.00
RNG040-1 (0.11) 1 0.04
RNG040-2 (0.22) 1 0.83

SET060-6 (0.12) 1 0.64
SET060-7 (0.12) 1 0.71
SET152-6 (0.12) 1 48.04
SET153-6 (0.12) >300 9.91

SYN048-1 (0.20) 1 0.01

Table 2. TPTP problems with ratings greater than 0.0 solved by leanCoP

leanTAP [3] only solves 135 (=6.1%) out of the tested 2200 TPTP problems,
two of them (FLD067-1, SYN048-1) are rated higher than 0.0. leanCoP solves
every problem which is solved by leanTAP except problem SYN350-1. Five of
the problems in Table 2 are rated 0.67 which means that most state-of-the-art
provers cannot prove them. Four of them are within the Field Theory domain,
the other (PUZ0034-1.004) is the problem to place 4 queens on a 4×4 chess
board, so that no queen can attack another.

4 Conclusion, Related Work and Outlook

We have presented a compact Prolog theorem prover for first-order (clause) logic
which implements the basic connection calculus. The goal-oriented approach
yields an astonishing performance. We ran leanCoP on a subset of the TPTP
library and were able to solve difficult problems for which current state-of-the-
art provers do not find a proof. Due to the compact code the program can easily
be modified for special purposes or applications. On the other hand the Prolog
program gives a short declarative description of the connection calculus.

Other lean provers for classical logic are Satchmo and leanTAP . Satchmo
[13] is a short model-generation prover written in Prolog. Input clauses are kept
in the Prolog database making an extensive use of assert and retract neces-
sary. In its basic version it can only deal with range-restricted clauses. leanTAP
[3] is a compact Prolog implementation of a free-variable analytic tableau cal-

culus for formulas in negation normal form. Having good performance on non-
clausal problems, it behaves rather poor on problems in clausal form.

We have implemented an only slightly longer non-clausal version of our
program for propositional logic. It does not need the input formula to be in
clausal form but preserves its structure throughout the entire proof search,
thus combining the advantages of non-clausal tableau calculi and goal-oriented
connection-based provers. Unfortunately the extension to first-order logic can-
not be done so easily, since copying of appropriate subformulas is a difficult
task. A non-clausal prover can also be extended to some non-classical logics,
like intuitionistic, modal or linear logic [16,8]. Thus leanCoP can serve as a basis
for lean connection-based theorem provers for logics for which up to now only
lean tableau-based provers [17,12] have been realized.

References

1. Argonne National Laboratory. Otter and MACE on TPTP v2.3.0. Web page at
http://www-unix.mcs.anl.gov/AR/otter/tptp230.html, May 2000.

2. O. Astrachan, D. Loveland. Meteors: High performance theorem provers using
model elimination. In Boyer, Automated Reasoning: Essays in Honour of Woody
Bledsoe. Kluwer, 1991.

3. B. Beckert and J. Posegga. leanTAP : lean, tableau-based theorem proving. 12th

CADE , LNAI 814, pp. 793–797, 1994.
4. W. Bibel. Matings in matrices. Communications of the ACM, 26:844–852, 1983.
5. W. Bibel. Automated Theorem Proving. Vieweg, second edition, 1987.
6. W. Bibel. Deduction: Automated Logic. Academic Press, 1993.
7. W. Bibel, S. Brüning, U. Egly, T. Rath. Komet. 12th CADE , LNAI 814, pp. 783–

787, 1994.
8. C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-

classical logics. Journal of Universal Computer Science, 5:88–112, 1999.
9. R. Letz, J. Schumann, S. Bayerl, W. Bibel. Setheo: A high-performance theorem

prover. Journal of Automated Reasoning, 8:183–212, 1992.
10. R. Letz, K. Mayr, C. Goller. Controlled integration of the cut rule into connection

tableaux calculi. Journal of Automated Reasoning, 13: 297–337, 1994.
11. D. Loveland. Mechanical theorem proving by model elimination. JACM, 15:236–

251, 1968.
12. H. Mantel and J. Otten. linTAP: A tableau prover for linear logic. 8th TABLEAUX

Conference, LNAI 1617, pp. 217–231, 1999.
13. R. Manthey and F. Bry. Satchmo: A theorem prover implemented in Prolog.

9th CADE , LNCS 310, pp. 415–434, 1988.
14. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-

94/6, Argonne National Laboratory, 1994.
15. M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, K. Mayr.

Setheo and E-Setheo – The CADE-13 systems. Journal of Automated Reason-
ing, 18:237–246, 1997.

16. J. Otten and C. Kreitz. A uniform proof procedure for classical and non-classical
logics. KI-96: Advances in Artificial Intelligence, LNAI 1137, pp. 307–319, 1996.

17. J. Otten. ileanTAP: An intuitionistic theorem prover. 6th TABLEAUX Conference,
LNAI 1227, pp. 307–312, 1997.

18. G. Sutcliffe, C. Suttner. The TPTP problem library - CNF release v1.2.1. Journal
of Automated Reasoning, 21: 177–203 (1998)

