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Abstract

The Prolog program

"prove(M,I) :- append(Q,[C|R],M), \+member(-_,C),
append(Q,R,S), prove([!],[[-!|C]|S],[],I).
prove([],_,_,_).
prove([L|C],M,P,I) :- (-N=L; -L=N) -> (member(N,P);
append(Q,[D|R],M), copy_term(D,E), append(A,[N|B],E),
append(A,B,F), (D==E -> append(R,Q,S); length(P,K), K<I,
append(R,[D|Q],S)), prove(F,S,[L|P],I)), prove(C,M,P,I)."

implements a theorem prover for classical first-order (clausal) logic which
is based on the connection calculus. It is sound and complete (provided
that an arbitrarily large I is iteratively given), and demonstrates a com-
paratively strong performance.

1. Introduction

The connection calculus (Bibel, 1983, 1987, 1993), the connection tableau cal-
culus (Letz et al., 1994) and the similar model elimination calculus (Loveland,
1968) are popular and successful proof procedures because of their goal-oriented
search strategy. Several proof systems based on one of these approaches have
been developed, e.g. KoMeT (Bibel et al., 1994), Setheo (Letz et al., 1992;
Moser et al., 1997) and Meteor (Astrachan and Loveland, 1991) to name a
few. All these systems have shown to be an appropriate basis to automate for-
mal reasoning in classical first-order logic.

The Prolog program shown in the abstract has been developed in the context
of a graduate course about “Automated Deduction”. Its main purpose was to
demonstrate a small and easy to use implementation of the (clausal) connection
calculus which can easily be understood and modified by the students themselves.
It turned out that the implementation is not only very compact but also shows
a surprisingly good performance.
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The interest in lean theorem proving arised after the theorem prover leanTAP
(Beckert and Posegga, 1995) became popular. leanTAP implements a free-variable
semantic tableau calculus and its minimal version consists only of eight lines of
Prolog code. leanTAP showed that it is possible to reach considerable performance
by using very compact code, thus making lean theorem provers an interesting
alternative for applications where state-of-the-art performance is not required.
In contrast to huge proof systems using a lot of sophisticated techniques, lean
theorem provers can easily be modified and adapted for special purposes. Fur-
thermore it is much easier to verify a few lines of Prolog code than to verify
thousands of lines of e.g. C code.

leanCoP consists only of three Prolog clauses. Like leanTAP the minimal ver-
sion is only a few lines long. The underlying calculus though is entirely different:
the connectedness condition needs a different kind of implementation techniques.
Whereas leanTAP performs well on formulas in negation normal form, the per-
formance can be considerably improved by the connection based approach of
leanCoP in particular for formulas in clausal form. leanCoP even finds proofs
for a number of problems which cannot be solved by current state-of-the-art
theorem provers. Thus our prover follows the tradition of lean theorem proving,
giving lean yet efficient code.

Outline of the Paper

In Section 2 we will explain in detail the Prolog source code of leanCoP as well as
some basic techniques used within the code. Section 3 presents performance re-
sults obtained by extensive experimental tests on problems in the TPTP library.
We compare leanCoP with three other well-known theorem provers based on dif-
ferent calculi: the lean semantic tableau prover leanTAP (Beckert and Posegga,
1995), the Prolog technology theorem prover Pttp (Stickel, 1992), and the res-
olution based theorem prover Otter (McCune, 1994). In Section 4 we will de-
scribe an easy way to refine the depth-bounded search of leanCoP. In Section 5
we will prove completeness and correctness of leanCoP. To this end we transform
the underlying connection calculus stepwisely into a purely declarative Prolog
program. We conclude with a short summary, some remarks on related work,
and a brief outlook to further research in Section 6.

We assume the reader to be familiar with the basic ideas of Prolog and the con-
nection calculus. See Clocksin and Mellish (1981) for an introduction to Prolog
and Bibel (1993) for an introduction to the connection calculus.

2. The Program

Our prover is based on the simplest version of a connection calculus (Bibel, 1983,
1987, 1993) and realizes a proof procedure for (full) first-order clause logic. In
contrast to (connection) tableau calculi which generate a number of intermediate
formulas from the original one, calculi based on the connection method operate
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exclusively on a single copy of the given formula. If one abstracts from this
difference which, however, is important for efficiency, a connection calculus can
be considered as constructing a connection tableau (Letz et al., 1994) where open
subgoals are selected in a depth-first way.

The process starts by selecting a start clause before extension steps and reduc-
tion steps are repeatedly applied. Whereas the extension step connects a subgoal
literal to a complementary literal of a new clause instance, the reduction step
connects it to a complementary literal of the so-called active path. The extension
step actually realizes the goal-oriented proof search.

To prove a formula we first need to translate the given first-order formula into
a set of clauses. We use the positive representation throughout the paper, i.e.
we prove a formula in disjunctive normal form which is equivalent to refuting
its negation in conjunctive normal form. Consider for example the following for-
mula, which is problem 21 of Pelletier (1985): (∃X(p⇒f(X))∧∃X(f(X)⇒p)) ⇒
∃X(p⇔f(X)). The translation to disjunctive skolemized normal form yields (p∧
¬f(a))∨(f(b)∧¬p)∨(p∧f(X))∨(¬p∧¬f(X)) which can be directly represented
by the clause set or matrix {{p,¬f(a)}, {f(b),¬p}, {p, f(X)}, {¬p,¬f(X)}}.

We will use Prolog lists to represent sets, Prolog terms to represent atomic
formulas, Prolog variables to represent first-order variables, and “-” to repre-
sent the negation “¬”. Thus the above clause set is represented by the Prolog
list [[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]] called Mat in the following
program.

We use the Prolog predicates prove/2 (with two arguments) and prove/4

(with four arguments) to implement leanCoP. The first Prolog clause of prove/2
selects a start clause from the given clause set. The two Prolog clauses of prove/4
realize the extension and reduction steps. A second Prolog clause of prove/2
(discussed in Section 2.3) can be added to realize an iterative deepening proof
search which is necessary to gain completeness.

2.1. Selecting a Start Clause

The Prolog predicate

prove(Mat,PathLim)

succeeds if there is a connection proof for the clause set Mat whose active path
lengths for all extension steps to first-order clauses, i.e. clauses which contain at
least one variable, are limited by PathLim.

prove(Mat,PathLim) :-

append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),

append(MatA,MatB,Mat1),

prove([!],[[-!|Cla]|Mat1],[],PathLim).
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A start clause Cla is selected by the (built-in) predicate append. Usually
append is used to append two lists, e.g. append([a],[b,c],L) yields L=[a,b,c].
If the first two arguments are uninstantiated, all possible solutions for them are
given on backtracking. For example append(A,[X|B],[a,b,c]),append(A,B,C)

will produce the three solutions X=a,C=[b,c], X=b,C=[a,c], and X=c,C=[a,b].
It realizes an easy way to successively select an element from a list, returning
the list without this element.

Since it is sufficient to consider only positive start clauses, we will only select
clauses Cla which do not contain any negative literals, i.e. no literals of the form
¬q. Only if Cla is a positive clause the goal \+member(-_,Cla) succeeds.

Afterwards the predicate prove/4 which realizes extension and reduction step
is called. The actual proof search is started using the special literal “!” as the
root. Instead of taking the selected start clause as the first subgoal clause, we
start the proof search with the subgoal containing only “!” and add the literal
“¬!” to the original start clause. The literal “!” should not occur in the clause
set Mat, so that the original start clause will be used for the first extension step.
This kind of initial step is necessary in order to allow copies of the start clause
later on.∗ Note that the “!” as used in this context is not a Prolog cut.

To prove our previous example using a maximal path length of 2, we have to
call the goal prove([[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]],2) which
will succeed. Hence our original formula is valid.

2.2. The Extension and the Reduction Step

The Prolog predicate

prove(Cla,Mat,Path,PathLim)

succeeds if there is a proof for the clause of open subgoals Cla using the clauses
in Mat and the active Path where the active path lengths for all extension steps
to first-order clauses are limited by PathLim.

prove([],_,_,_).

If the clause of open subgoals is empty, we do not have to perform any further
search. In this case the first clause of prove/4 will succeed. Otherwise the second
clause of the predicate prove/4 matches.

prove([Lit|Cla],Mat,Path,PathLim) :-

(-NegLit=Lit;-Lit=NegLit) ->

( member(NegLit,Path);

append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),

append(ClaA,[NegLit|ClaB],Cla2),append(ClaA,ClaB,Cla3),

∗Starting with prove(Cla,Mat1,[],PathLim) instead results in incompleteness.
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( Cla1==Cla2 -> append(MatB,MatA,Mat1);

length(Path,K), K<PathLim,

append(MatB,[Cla1|MatA],Mat1)

), prove(Cla3,Mat1,[Lit|Path],PathLim)

), prove(Cla,Mat,Path,PathLim).

Now we try to find a solution for the literal Lit from the open subgoals. After
NegLit is bound to the negation of Lit, it is checked whether an application
of a reduction step is possible, i.e. whether NegLit unifies with an element of
Path, using the (built-in) predicate member. For this sound unification has to be
used.† If a reduction step is performed we skip to the last line where prove/4 is
called to find solutions for the remaining subgoals in Cla. Otherwise an extension
step is performed which will first select a clause Cla1 from Mat using append as
explained before. A copy Cla2 of the clause Cla1 is made (where all variables in
Cla2 are renamed)‡ using the (built-in) predicate copy_term. And an element of
Cla2 which unifies with NegLit is selected using again our “append technique”.
Again sound unification has to be used for unifying NegLit with an element of
Cla2. Cla3 is bound to the remaining literals in Cla2.

If the clauses Cla1 and Cla2 are (syntactically) identical, i.e. do not contain
any variables, Mat1 is bound to the remaining clauses in Mat (without the clause
Cla1). Otherwise the clause Cla1 is included in the set Mat1, after it has been
checked that the length K of the active Path does not exceed the limit PathLim.
Limiting the active path is necessary to achieve completeness within Prolog’s
incomplete depth-first search strategy. “Goal1 -> Goal2 ; Goal3” implements
the if-then-else construct in Prolog. It succeeds if either Goal1 succeeds and
then Goal2 succeeds or else if Goal1 fails, and then Goal3 succeeds. There is
no backtracking over Goal1 once it has succeeded (i.e. there is an implicit cut).
Note that we slightly reordered the clauses in Mat1. Clauses in MatB, which have
not been investigated during the current extension step, are placed ahead of all
other clauses in Mat1. In general this leads to a better arrangement of the search
space.

Finally prove/4 is called to find solutions for the new clause of open subgoals
Cla3, where Lit has been added to Path, and for the remaining open subgoals
in Cla.

2.3. Iterative Deepening

If the following clause is added after the first clause of prove/2

prove(Mat,PathLim) :-

nonground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

†In eclipse Prolog sound unification is switched on with set flag(occur check,on).
‡Hence it is not necessary for the set of input clauses to have disjoint variables.
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iterative deepening on the proof search depth, i.e. the length of the active path,
is performed yielding completeness for first-order logic. The (built-in) predicate
nonground(Mat) succeeds if Mat does contain at least one (first-order) vari-
able.§ In this case Mat represents a first-order formula and the limit PathLim

is increased before the proof search is restarted. Otherwise, if Mat represents
a variable-free or ground formula, the predicate fails and the clause set Mat is
not valid. Remember that we do not check the length of Path for variable-free
clauses, so we do not need to increase PathLim for variable-free formulas. This
immediately yields a decision procedure for propositional logic.

For our previous example we start the proof search using iterative deepening by
prove([[p,-f(a)],[f(b),-p],[p,f(X)],[-p,-f(X)]],1). There is no proof
with a path limit of 1, but the second proof attempt using a path limit of 2 will
eventually succeed.

3. Performance

We have tested leanCoP on the problems contained in the current version 2.3.0
of the TPTP library (Sutcliffe and Suttner, 1998). We have tested it on all
2193 propositional and first-order problems in clausal form which are known to
be valid (or unsatisfiable using negative representation) and all 7 propositional
problems known to be invalid (or satisfiable). No reordering of clauses or literals
has been done. When transforming the formulas into an appropriate input format
for leanCoP we translated literals of the form ++q into -q and literals of the form
--q into q, respectively, since we use a positive representation.

All tests were performed on a SUN Ultra10 with 128 Mbytes memory using
eclipse Prolog version 3.5.2. When compiling leanCoP the generation of debug
information has been switched off using “nodbgcomp”. The time limit for all
proof attempts was 300 seconds.

Table 1: Overall performance of leanCoP on the TPTP library

number of all tested problems problems solved within 300 seconds

2200 (100%) 750 (34.1%)
390 185 121 54

less than 1s 1s to 10s 10s to 100s 100s to 300s

Even though a lot of the problems are rather hard, leanCoP was able to solve
750 problems, 390 of them in less than one second (see Table 1). In the TPTP
library the difficulty of each problem is rated from 0.0 to 1.0 relative to state-of-
the-art theorem provers. A rating of 0.0 means that all state-of-the-art provers
can solve the problem, a rating of 1.0 means that no state-of-the-art prover can

§In some Prolog dialects \+ground(Mat) has to be used for this purpose instead.
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solve it. leanCoP solves more than half of the problems rated 0.0. Table 2 shows
the number of solved problems classified with respect to the problem rating.
Problems rated “?” are those problems which are not rated yet.

Table 2: Performance on TPTP library classified with respect to problem rating

rating 0.0 0.01 to 0.32 0.33 to 0.65 0.66 to 0.99 1.0 ?
total 1308 189 326 165 53 159

solved 673 (51%) 26 (14%) 29 (9%) 5 (3%) 0 ( 0%) 17 (11%)

leanCoP is able to solve 60 problems rated higher than 0.0. They are compiled
in Table 3. For each of these problems its name and rating is given as well as the
timings in seconds. Five of the problems in Table 3 are rated 0.67 which means
that most state-of-the-art provers cannot prove them. Four of them are within
the field theory domain (FLD), the other (PUZ0034-1.004) is the problem to
place 4 queens on a 4×4 chess board, so that no queen can attack another one.

3.1. leanCoP Compared to Otter, Pttp, and leanTAP

We have compared leanCoP with three other well-known theorem provers: Ot-
ter 3.1 (and Mace 1.4), Pttp (Prolog version 2e), and leanTAP (version 2.3).
Otter (McCune, 1994) is a theorem prover based on resolution and paramod-
ulation which has been very successful in proving difficult mathematical prob-
lems. Pttp (Stickel, 1988, 1992) is an implementation of the model elimination
theorem-proving procedure that extends Prolog to the full first-order calculus. It
achieves a high inference rate by compiling the input formula into a Prolog pro-
gram. Sound unification, iterative deepening, and the reduction rule are added
to gain a complete search procedure. It uses an inference-bounded proof search
(see also Section 4). leanTAP (Beckert and Posegga, 1995; Posegga and Schmitt,
1999) is a first-order theorem prover based on free-variable semantic tableaux. Its
very compact Prolog implementation achieves a surprisingly good performance,
in particular for input formulas in non-clausal form.

The timings of Otter on the TPTP library are regularly published (Argonne
National Laboratory, 2000). They were obtained on a 400 MHz Linux machine
which should be slightly faster than our machine. The timings of Pttp and
leanTAP were obtained on our SUN Ultra10 using eclipse Prolog. All problems
have been converted into Pttp and leanTAP syntax by using the tools provided
with the TPTP library. Again no reordering of clauses or literals has been done.
The overall performance of these three provers and leanCoP is shown in Table 4.

As expected Otter solves the largest number of problems: 1602 out of the
tested 2200 problems, most of them within 1 second. 249 of the solved problems
are rated difficult, i.e. higher than 0.0. On 59 problems Otter failed because
of an empty set-of-support (“sos”) or due to a lack of memory. Otter cannot
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Table 3: TPTP problems solved by leanCoP and rated greater than 0.0

Problem Rating Otter Pttp leanCoP
BOO012-1 (0.17) 3 51.04 28.53
CAT003-2 (0.50) >300 >300 34.87
CAT003-3 (0.11) >300 113.48 6.76
CAT012-4 (0.17) 1 0.42 46.21
COL002-3 (0.33) >300 0.07 0.03
FLD013-1 (0.67) >300 26.07 1.31
FLD023-1 (0.33) >300 0.47 1.66
FLD025-1 (0.67) >300 25.71 1.31
FLD030-1 (0.33) 1 0.10 0.08
FLD030-2 (0.33) >300 0.13 1.28
FLD037-1 (0.33) >300 0.91 4.45
FLD060-1 (0.67) >300 4.53 1.59
FLD061-1 (0.67) >300 5.78 1.91
FLD067-1 (0.33) >300 0.16 3.95
FLD070-1 (0.33) >300 0.15 6.91
FLD071-3 (0.33) 2 0.12 1.03
GEO026-3 (0.11) 2 >300 129.27
GEO041-3 (0.22) 1 5.65 296.70
GRP008-1 (0.22) 1 95.23 2.31
LCL045-1 (0.20) 119 0.41 1.78
LCL097-1 (0.20) 1 0.85 0.75
LCL111-1 (0.20) 1 0.11 0.25
LCL130-1 (0.20) 1 0.27 0.03
LCL195-1 (0.20) sos-empty 0.57 27.00
NUM283-1.005 (0.20) 1 0.37 0.44
NUM284-1.014 (0.20) 1 >300 290.56
PLA004-1 (0.40) >300 >300 12.44
PLA004-2 (0.40) >300 >300 18.69
PLA005-1 (0.40) >300 >300 1.38
PLA005-2 (0.40) >300 >300 0.38
PLA007-1 (0.40) >300 10.82 0.44
PLA009-1 (0.40) >300 >300 0.19
PLA009-2 (0.40) >300 >300 6.62
PLA011-1 (0.40) >300 >300 0.44
PLA011-2 (0.40) >300 >300 1.38
PLA012-1 (0.40) >300 >300 211.88
PLA013-1 (0.40) >300 >300 0.75
PLA014-1 (0.40) >300 >300 6.56
PLA014-2 (0.40) >300 >300 6.88
PLA016-1 (0.40) >300 5.78 0.25
PLA019-1 (0.40) >300 9.59 0.19
PLA021-1 (0.40) >300 >300 0.56
PLA022-1 (0.40) >300 1.35 1.19
PLA022-2 (0.40) >300 0.14 0.12
PLA023-1 (0.40) >300 >300 231.69
PUZ034-1.004 (0.67) sos-empty 2.86 35.81
RNG006-2 (0.20) 5 0.13 0.94
RNG040-1 (0.11) 1 0.16 0.06
RNG040-2 (0.22) 1 1.30 0.75
RNG041-1 (0.22) 1 0.41 159.12
SET016-7 (0.12) >300 0.81 183.31
SET018-7 (0.12) >300 0.86 187.06
SET060-6 (0.12) 1 0.58 0.62
SET060-7 (0.12) 1 0.63 0.69
SET152-6 (0.12) 1 2.24 46.50
SET153-6 (0.12) >300 2.20 9.62
SET187-6 (0.38) >300 >300 238.06
SET231-6 (0.12) >300 0.64 170.50
SYN048-1 (0.20) 1 0.01 0.01
SYN311-1 (0.20) sos-empty 6.51 176.69
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Table 4: Overall performance of Otter, Pttp, leanTAP , and leanCoP

Otter Pttp leanTAP leanCoP
solved (total) 1602 999 137 750
0 to <1 second 1209 590 110 390
1 to <10 seconds 142 295 10 185
10 to <100 seconds 209 77 16 121
100 to <200 seconds 31 26 0 31
200 to 300 seconds 11 11 1 23
problems rated 0.0 1230 851 130 673
problems rated >0.0 249 121 2 60
problems rated ? 123 27 5 17
proved 1595 999 135 745
refuted 7 0 2 5
timeout (>300 seconds) 539 1201 1978 1450
failed (sos/memory) 59 0 85 0

solve 39 of the 60 difficult problems solved by leanCoP which are shown in Table
3. Most of these problems are within the field theory domain (FLD) and the
planning domain (PLA). Pttp solves 999 out of the tested 2200 problems, 121
of them are rated higher than 0.0. leanTAP only solves 135 problems, two of them
(FLD067-1 and SYN048-1) are rated “difficult”. leanCoP solves every problem
which is solved by leanTAP except problem SYN350-1.

The problems in the TPTP library are categorized in 28 different domains, e.g.
algebra (ALG), category theory (CAT), combinatory logic (COL), field theory
(FLD), geometry (GEO), group theory (GRP), logic calculi (LCL), planning
(PLA), puzzles (PUZ), set theory (SET), syntactic (SYN). See Sutcliffe and
Suttner (1998) for a detailed description. Table 5 shows the number of problems
each prover has successfully solved within each domain. The last two columns
are explained in the next section.

Otter solves the largest number of problems in most domains. Within the
FLD domain Pttp solves more problems than all other provers. leanCoP solves
25 problems in the PLA domain which is considerably more than solved by
Otter (5 problems), Pttp (11 problems), and leanTAP (0 problems). Due to
its goal-oriented connection-based approach leanCoP in general performs good
on Horn problems, i.e. problems containing at most one negated literal in each
clause. It performs rather bad on problems containing (only) equality since no
special techniques for dealing with equality have been integrated into leanCoP.

3.2. leanCoP on Problems of CASC-17

CASC is a competition where the performance of sound, fully automatic first-
order theorem proving systems is evaluated. We have run leanCoP on all 135 valid
(original) problems in clausal form selected for the CASC-17. The problems were
taken from the TPTP library where the clause order has been changed randomly.
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Table 5: Performance on TPTP library ordered with respect to problem domains

Domain Otter Pttp leanTAP leanCoP leanCoPi leanCoP(i)

ALG 4 0 0 0 0 0
ANA 0 0 0 0 0 0
BOO 59 15 0 8 8 11
CAT 45 26 0 21 25 28
CID 2 0 0 0 0 0
CIV 11 6 0 2 0 2
COL 94 53 0 45 49 49
COM 5 5 0 5 5 5
FLD 68 92 2 37 64 64
GEO 86 53 1 25 47 48
GRA 1 1 1 1 0 1
GRP 238 93 2 83 80 86
HEN 60 28 0 8 15 15
KRS 9 8 3 7 5 7
LAT 19 1 0 1 1 1
LCL 272 129 35 99 118 118
LDA 13 1 0 0 1 1
MGT 0 0 0 0 0 0
MSC 9 7 1 7 5 7
NUM 27 21 4 18 20 21
PLA 5 11 0 25 11 25
PRV 7 4 0 4 4 5
PUZ 45 27 12 28 22 28
RNG 55 19 0 16 17 17
ROB 14 4 0 1 4 4
SET 139 111 4 52 60 66
SYN 310 279 71 252 225 256
TOP 5 5 1 5 4 5
proved 1595 999 135 745 790 865
refuted 7 0 2 5 0 5
total 1602 999 137 750 790 870

leanCoP is able to solve 10 out of the 135 tested problems. They are compiled
in Table 6. More than half of the solved problems are from the planning domain
(PLA). Otter was able to solve 14 out of the 135 tested problems. Pttp solves
6 problems whereas leanTAP does not solve any selected problem.

The selected problems are divided into classes according to the problem char-
acteristics. The MIX class contains mixed “really-non-propositional theorems”
in clausal form. Mixed means Horn and non-Horn problems, with or without
equality, but not unit equality problems. Really-non-propositional means prob-
lems with an infinite Herbrand universe. leanCoP solves 9 problems which belong
to the MIX class (all solved problems except COL020-1). That is one more prob-
lem than Otter was able to solve in this class. For the final results the proof
systems have been ranked according to the number of solved problems and the
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Table 6: Problems of CASC-17 solved by leanCoP

Problem Rating Time (sec)
CAT002-4 (0.17) 8.58
CAT003-2 (0.50) 7.15
COL020-1 (0.00) 0.05
PLA004-2 (0.40) 82.31
PLA005-2 (0.40) 0.36
PLA009-2 (0.40) 1.13
PLA011-2 (0.40) 0.30
PLA014-1 (0.40) 89.34
PLA019-1 (0.40) 4.61
SYN311-1 (0.20) 181.77

average runtime for successful solutions. Table 7 shows an extract from the final
result summary for the MIX class where the result of leanCoP has been included.
The number of solved problems as well as the average runtime for successful so-
lutions are given. Since our machine is about two times faster than the hardware
used for CASC-17, we doubled all proof times of leanCoP and used a time limit
of 250 seconds instead of the 500 seconds used in the competition. leanCoP would
have ranked eighth among nine proof systems.

Table 7: CASC-17 results for MIX class with leanCoP’s result added

E E-Setheo . . . Bliksem leanCoP Otter
Attempted 75 75 . . . 75 75 75
Solved 57 57 . . . 18 9 8
Av. Time (sec) 79.31 160.53 . . . 65.33 83.46 55.86

The MIX class is divided into five categories. One of these categories is the
HNE category which contains Horn problems with no equality. Again an extract
from the final result summary for the HNE category is shown in Table 8. From
the ten problems solved by leanCoP all six problems in the planning domain
as well as problem SYN311-1 belong to this category. This would have been a
remarkable sixth rank among nine proof systems.

4. Refining the Depth-bounded Search

leanCoP uses a depth-first search strategy to explore the search space. After each
extension step the new subgoals are considered first before alternative connec-
tions are checked. A depth-bounded search is necessary in order to investigate
the whole search space up to a certain depth limit. We used the proof depth, i.e.
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Table 8: CASC-17 results for HNE category with leanCoP’s result added

E . . . Vampire leanCoP Bliksem Otter Scott

Attempted 15 . . . 15 15 15 15 15
Solved 15 . . . 10 7 3 1 1
Av. Time (sec) 42.40 . . . 8.36 102.81 179.70 79.00 205.60

the length of the active path, to bound the search depth and use iterative deep-
ening to obtain completeness. This path-bounded strategy considers only proofs
with |Path|<PathLim for every active path Path and given path limit PathLim.

An inference-bounded approach uses the number of inferences to limit the
search depth. As pointed out in Letz et al. (1994) both bounds have their dis-
advantages: the path-bounded method does not sufficiently restrict the number
of inferences, whereas the inference-bounded strategy does not sufficiently limit
the depth of the proof, i.e. the length of the active path. A combination of both
approaches seems to be an appropriate compromise.

We want to integrate a “lean” combined path- and inference-bounded search
strategy into leanCoP. For the number of inferences we will only count extension
steps and weight each extension step with the number of new subgoal literals
contained in the new clause. Let Path be the active path, n the number of
extension steps, and c1, .., cn the clauses to which a connection step during the
proof search has been established. Then we will restrict the proofs to those with

|Path|+
n∑

i=1

(|ci| − 1) < Limit (1)

where Limit is the depth bound which is used for the iterative deepening search.

4.1. The leanCoPi Program

We will shortly explain the new version leanCoPi of our prover realizing the path-
and inference-bounded proof search approach. Only minor changes of the Prolog
source code were necessary. The Prolog predicate

prove_i(Mat,Limit)

succeeds if there is a connection proof for the clause set Mat of a formula F ,
which fulfills equation (1). The first proof step where a positive start clause is
selected remains unchanged; only a fifth argument is added when calling the
actual proof search predicate prove i/5.

prove_i(Mat,Limit) :-

append(MatA,[Cla|MatB],Mat), \+member(-_,Cla),

append(MatA,MatB,Mat1),

prove_i([!],[[-!|Cla]|Mat1],[],Limit,_).
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The Prolog predicate

prove_i(Cla,Mat,Path,Limit,Limit1)

succeeds if there is a proof for the clause of open subgoals Cla using the clauses
in Mat and the active Path which fulfills equation (1). The updated depth bound
Limit1 is returned. The first clause of prove i/5 which succeeds for an empty
set of open subgoals remains unchanged. The added fifth argument is bound to
Limit since the proof depth and the number of inferences does not change.

prove_i([],_,_,Limit,Limit).

The second clause of prove i/5 is slightly modified to check the refined depth-
bounded condition expressed in equation (1). Instead of calculating the term on
the left side of this equation we will subtract |ci|−1 from Limit after each ex-
tension step and use the updated Limit to continue the search. In case of a
reduction step the new Limit3 does not change, i.e. we only add “Limit3 is

Limit”. In case of an extension step we have to add “length(Cla3,N), Limit2

is Limit-N”. Cla3 is the clause used for the extension step without the “con-
nection literal” NegLit and Limit2 is the new limit. A fifth argument has to be
added for the call of prove i/5 to prove the remaining subgoals. Furthermore we
move the check |Path|<Limit , i.e. “length(Path,K), K<Limit” to the begin-
ning of the Prolog clause. This last modification turned out to be more efficient
when the refined depth-bounded search strategy is used.

prove_i([Lit|Cla],Mat,Path,Limit,Limit1) :-

length(Path,K), K<Limit,

(-NegLit=Lit;-Lit=NegLit) ->

( member(NegLit,Path), Limit3 is Limit;

append(MatA,[Cla1|MatB],Mat), copy_term(Cla1,Cla2),

append(ClaA,[NegLit|ClaB],Cla2), append(ClaA,ClaB,Cla3),

( Cla1==Cla2 -> append(MatB,MatA,Mat1);

append(MatB,[Cla1|MatA],Mat1)

), length(Cla3,N), Limit2 is Limit-N,

prove_i(Cla3,Mat1,[Lit|Path],Limit2,Limit3)

), prove_i(Cla,Mat,Path,Limit3,Limit1).

In the original leanCoP program the depth limit is only checked for first-order
clauses making an increase of the depth limit for variable-free problems not nec-
essary. Since the leanCoPi version restricts the depth limit also for variable-free
clauses, we have to perform iterative deepening also for variable-free problems.
This will slightly change the last Prolog clause which realizes iterative deepening.
Note that leanCoPi is not a decision procedure for propositional logic anymore.

prove_i(Mat,Limit) :-

Limit1 is Limit+1, prove_i(Mat,Limit1).
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4.2. Performance of leanCoPi

We have tested leanCoPi on all relevant problems in the TPTP library. The
selected problems and the test environment are the same as described in Section
3. leanCoPi solves 790 (or 35.9%) of the tested 2200 problems, 22 are rated “?”
and 57 of them are rated higher than 0.0. All 21 of those problems rated higher
than 0.0 which are not already solved by leanCoP are compiled in Table 9 (times
are given in seconds). Even though leanCoPi proves more problems than leanCoP,
it is in general a bit slower.

Table 9: Problems rated greater than 0.0 solved by leanCoPi but not by leanCoP

Problem Rating Otter Pttp leanCoPi

CAT001-3 (0.11) 1 >300 19.17
CAT002-3 (0.11) 52 >300 32.92
CAT002-4 (0.17) 2 2.03 11.36
CAT004-4 (0.17) 88 84.72 94.85
CAT012-3 (0.11) 1 7.10 11.35
FLD002-3 (0.67) 1 0.87 283.47
FLD013-4 (0.33) 3 1.09 189.50
FLD016-3 (0.33) 24 0.32 176.94
FLD028-3 (0.33) 25 1.71 197.55
FLD067-3 (0.33) 32 0.14 17.34
GEO058-3 (0.22) 1 0.30 45.06
GEO059-3 (0.22) >300 0.37 26.59
GEO064-3 (0.12) 1 0.59 68.14
GEO065-3 (0.12) 1 0.56 68.28
GEO066-3 (0.12) 1 0.56 68.37
HEN007-6 (0.17) 1 3.73 155.08
LCL064-1 (0.40) 42 0.81 121.26
LCL230-1 (0.40) sos-empty 3.73 110.91
LCL231-1 (0.40) sos-empty 5.43 147.44
SET196-6 (0.12) 17 0.69 142.46
SET197-6 (0.12) 17 0.67 142.59

Table 5 shows how many problems leanCoPi solves with respect to the problem
domain. The results are a bit closer to the results of the Pttp prover which also
uses an inference-bounded search. It performs considerably better on domains
where Pttp performs well, e.g. the FLD, GEO or HEN domain. On the other
hand it performs not so good on the PLA domain on which leanCoP’s perfor-
mance is excellent. The last column of Table 5 considers all problems which are
proven by either leanCoP or leanCoPi.

5. Proving Completeness and Correctness

In order to prove completeness and correctness of leanCoP we express the connec-
tion calculus by a first-order formula so that prove(M) is a logical consequence
of this formula iff there is a derivation for the set of clauses M in the connec-
tion calculus. This formula is then translated into a purely declarative Prolog
program. We finally show that Prolog’s depth-first search is complete for the
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({},M, P )
axiom

(C, M\C, {})
M

for some positive C∈M start rule

(C\L,M, P ) for some L∈C, L∈P
(C,M,P ) with (L,L) complementary

reduction rule

(C\L,M,P ) (C1\L,M\C1, P∪{L}) for some L∈C,C1∈M, L∈C1

(C, M, P ) with (L, L) complementary
extension rule

Figure 1: The connection calculus for propositional logic

constructed Prolog program. We will first concentrate on the propositional case
and extend our approach to the first-order case afterwards.

5.1. Propositional Logic

The connection calculus is based on the matrix characterization (Bibel, 1987) of
logical validity. Basic element is the connection, a pair of literals (L, L) with the
same predicate symbol but with different signs, i.e. one literal contains a nega-
tion, the other does not. A pair (L,L) of propositional literals is complementary
iff they form a connection.

Definition 5.1: Let M be a matrix, i.e. a set of clauses, and C, C1 be clauses,
i.e. sets of literals. Let L, L be literals and P be a path, i.e. a set of literals. The
axiom and the rules of the propositional connection calculus are given in Figure
1. A matrix M is provable iff there is a derivation for M in the connection
calculus whose leaves are axioms. (C,M, P ) is provable iff there is a derivation
for (C,M, P ) in the connection calculus whose leaves are axioms.

Lemma 5.1: A propositional formula F is valid, iff the matrix M of F is prov-
able in the propositional connection calculus.

Proof: See Bibel (1987). 2

Each axiom or rule of the form premise
conclusion

is translated into an implication
∀ . . . [prove (conclusion) ⇐ ∃ . . . prove (premise)] whereas an empty premise is
translated into true.

Definition 5.2: Let positive(C) be true iff the clause C is positive, i.e. does
not contain any negation, and compl(L,L) be true iff the pair (L,L) is com-
plementary. Let CoCalc be the following first-order formula which expresses the
axiom and the rules of the connection calculus in Figure 1.
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∀M,P [prove ({},M, P ) ⇐ true] (axiom)
∧

∀M [prove (M) ⇐ ∃C∈M (positive(C) ∧ prove(C, M\C, {}) ) ] (start rule)
∧

∀C, M,P [prove (C, M, P ) ⇐ ∃L∈C ∃L∈P (reduction rule)
(compl(L, L) ∧ prove(C\L,M,P ) ) ]

∧
∀C, M,P [prove (C, M, P ) ⇐ ∃L∈C ∃C1∈M ∃L∈C1 (extension rule)

(compl(L, L) ∧ prove(C\L,M,P )
∧ prove(C1\L,M\C1, P∪{L}) ) ]

Lemma 5.2: A matrix M is provable iff the formula CoCalc ⇒ prove(M) is
valid.

Proof: We show the following: M or (C, M, P ) is provable iff there is a proof
for CoCalc` prove(M) or CoCalc` prove(C, M,P ), respectively, in the sequent
calculus LK (Gentzen, 1935). Let M be a matrix, P be a path, C, C1 be clauses,
and L, L be literals. Let AxiomM,P be the following derivation in LK

CoCalc ` true axiom prove({},M, P ) ` prove({}, M, P )
axiom

CoCalc , true⇒prove({},M, P ) ` prove({},M, P )
⇒-left

CoCalc ,∀M ′,P ′[true⇒prove({},M ′, P ′)] ` prove({},M, P )
∀-left

CoCalc ` prove({},M, P )
contract-left

and let StartM,C be the following derivation in LK:

CoCalc ` prove(C, M, {})
CoCalc ` positive(C) ∧ prove(C, M, {}) ∗

CoCalc ` ∃C ′(positive(C ′) ∧ prove(C ′,M, {})) ∃-right prove(M) ` prove(M)
axiom

CoCalc ,∃C ′(positive(C ′) ∧ prove(C ′,M, {})) ⇒ prove(M) ` prove(M)
⇒-left

CoCalc , ∀M ′[∃C ′(positive(C ′) ∧ prove(C ′,M ′, {})) ⇒ prove(M ′)] ` prove(M)
∀-left

CoCalc ` prove(M)
contract-left

There are similar derivations for ReductionM,P,C,L,L

CoCalc ` prove(C\L,M, P )

CoCalc ` compl(L, L) ∧ prove(C\L,M, P )
∗∗

...

. . .

prove(C,M, P ) ` prove(C, M, P )
axiom

...

. . .

CoCalc ` prove(C, M,P )
contract-left

and for ExtensionM,P,C,C1,L,L in LK:
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CoCalc ` prove(C\L, M, P ) CoCalc ` prove(C1\L,M\C1, P∪{L})
CoCalc ` prove(C\L,M,P ) ∧ prove(C1\L ∧M\C1, P∪{L})

∧-right

CoCalc`compl(L, L) ∧ prove(C\L,M, P ) ∧ prove(C1\L,M\C1, P∪{L})
∗∗

...

. . .
...

axiom

...

. . .

CoCalc ` prove(C, M, P )
contract-left

“⇒”: The proof is by structural induction on the construction of a proof S for M
or (C, M, P ) in the connection calculus. Axiom: If the proof S consists only of the
axiom-rule then C={} and AxiomM,P is a proof for CoCalc ` prove({},M, P )
in LK. Rules: Let S be a proof for M or (C, M,P ) where the start, reduction or
extension rule is the last rule in S, i.e. S has one of the following forms:

S1

(C,M\C,{})
M

start

S2

(C\L,M,P )
(C, M, P ) reduction

S3

(C\L,M,P )
S4

(C1\L,M\C1,P∪{L})
(C, M, P )

extension

According to the induction hypothesis there are derivations T1, T2, T3, and T4 in
LK so that

T1

CoCalc ` prove(C, M, {})
CoCalc ` prove(M)

StartM,C

T2

CoCalc ` prove(C\L,M, P )
CoCalc ` prove(C, M, P )

ReductionM,P,C,L,L

T3

CoCalc ` prove(C\L,M, P )
T4

CoCalc ` prove(C1\L,M\C1, P∪{L})
CoCalc ` prove(C, M, P )

ExtensionM,P,C,C1,L,L

are proofs for CoCalc` prove(M) or CoCalc` prove(C,M, P ), respectively, in
the sequent calculus LK. C is a positive clause in S1, (L, L) is complementary in
S2 for some L∈P , and (L,L) is complementary in S3/S4. Therefore positive(C)
in StartM,C and compl(L,L) in ReductionM,P,C,L,L and ExtensionM,P,C,C1,L,L are
true, and the inferences * and ** are correct.

“⇐”: Every proof for CoCalc` prove(M) or CoCalc` prove(C,M, P ) in LK can
be build up only by using the derivations AxiomM,P , StartM,C,ReductionM,P,C,L,L,
and ExtensionM,P,C,C1,L,L. By structural induction on the construction of such a
proof in LK a proof of M or (C,M, P ), respectively, in the connection calculus
can be constructed. 2

The third and fourth implication of the formula CoCalc can be simplified
which yields the following equivalent formula

∀M, P [prove ({},M, P )]
∧ ∀M [prove (M) ⇐ ∃C∈M (positive(C) ∧ prove(C,M\C, {}) ) ]
∧ ∀C,M,P [prove (C,M, P ) ⇐ ∃L∈C ∃L (compl(L, L)∧(L∈P ∨ ∃C1∈M ∃L∈C1

prove(C1\L,M\C1, P∪{L}) ) ∧ prove(C\L, M,P ) ) ]



J. Otten and W. Bibel: Lean Connection-Based Theorem Proving 18

prove(Mat) :-

append(MatA,[Cla|MatB],Mat), append(MatA,MatB,Mat1),

\+member(-_,Cla),

prove(Cla,Mat1,[]).

prove([],_,_).

prove([Lit|Cla],Mat,Path) :-

(-NegLit=Lit;-NegLit\=Lit,-Lit=NegLit),

( member(NegLit,Path);

append(MatA,[Cla1|MatB],Mat), append(MatA,MatB,Mat1),

append(ClaA,[NegLit|ClaB],Cla1), append(ClaA,ClaB,Cla3),

prove(Cla3,Mat1,[Lit|Path])

), prove(Cla,Mat,Path).

Figure 2: A declarative version of leanCoP for propositional logic

which can again be transformed into the equivalent formula CoCalc∗:

∀M [prove (M) ⇐ ∃C∈M (M1=M\C ∧ positive(C) ∧ prove(C,M1, {}) ) ]
∧ ∀M, P [prove ({}, M, P )]
∧ ∀C,M, P [prove (C, M, P ) ⇐ ∃L∈C ∃L (compl(L,L)∧(L∈P ∨ ∃C1∈M (L∈C1

∧M1=M\C1 ∧ C3=C1\L ∧ prove(C3,M1, {L}∪P ) ) ) ∧ prove(C\L,M, P ) ) ]

Lemma 5.3: The formula CoCalc ∗ ⇒ prove(M) is valid for the matrix M iff
the Prolog program in Figure 2 succeeds for the goal prove(M).

Proof: The formula CoCalc ∗ and the Prolog program in Figure 2 are indeed
equivalent, since the following propositions hold.

1. Implication “⇐”, disjunction “∨”, and conjunction “∧” are expressed in
Prolog by “:-”, “;”, and “,”, respectively. All variables occuring in the
head of a Prolog clause are implicitly quantified by universal quantifiers.

2. We can consider sets of literals and sets of clauses as ordered multisets.
Ordered multisets can be expressed by Prolog lists.

3. ∃X∈S (S1=X\S ∧ q(X,S1, S) ) is true iff the Prolog goal “append(A,
[X|B],S), append(A,B,S1), q(X,S1,S)” succeeds. X, S, S1 correspond
to X, S, S1, and A, B are fresh variables not occuring elsewhere.

4. positive(C) is true iff the goal “\+member(-_,C)” succeeds.

5. compl(L, L) is true iff “-NegLit=Lit;-NegLit\=Lit,-Lit=NegLit” suc-
ceeds.

6. ∃X∈S is true iff the goal “member(X,S)” succeeds.
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7. q(S)⇔∃X∈S ( r(X) ∧ q(S\X) ) is equivalent to q({Xf}∪Sf )⇔ ( r(Xf ) ∧
q(Sf ) ) where Xf is the first element of the (ordered) set {Xf}∪Sf and S
is a non-empty set.

We assume the Prolog system to be correct and that sound unification is switched
on.¶ According to the semantics of a Prolog program P the following hold:
if goal(...) succeeds then P⇒goal(...) is valid. If P⇒goal(...) is valid and
goal(...) terminates, then goal(...) will succeed. Note that the termination
condition is essential, since Prolog uses an incomplete depth-first search. There-
fore our lemma is true, if the Prolog program in Figure 2 terminates for every
goal “prove(M)” and matrix M.
append as well as member terminate for all inputs. Therefore prove(M) ter-

minates for every matrix M if prove(C,M,P) terminates for every clause C, ma-
trix M, and path P. The first clause of prove(C,M,P) always terminates. Let
#(C,M, P ):=|C|+|M | be the size of a goal prove(C,M,P) where |M | is defined
as |M |:= ∑

c∈M |c|. Then the sizes of the two prove goals within the second clause

of prove(C,M,P) are #(C1\L,M\C1, P )=|C1|−1+|M |−|C1|=|M |−1<|C|+|M |
and #(C\L,M, P )=|C|−1+|M |< |C|+|M |. Since the size of these goals de-
creases for each call and this size is always non-negative, i.e. #(C,M,P )≥0 for
all C, M, P , every goal prove(C,M,P) terminates. 2

Theorem 5.1: Let F be a (propositional) formula and M its matrix. The formula
F is valid iff prove(M) succeeds for the Prolog program in Figure 2.

Proof: Follows immediately from Lemma 5.1, Lemma 5.2, Lemma 5.3, and the
equivalence of CoCalc and CoCalc ∗. 2

5.2. First-order Logic

The approach used for the propositional logic can easily be extended to prove
completeness and correctness in the first-order case. Two more concepts have to
be integrated into the calculus: appropriate clauses of the given matrix have to
be copied and the search depth has to be limited to achieve completeness within
Prolog’s incomplete search strategy. Like for propositional logic the connection
calculus for first-order logic is based on complementary connections. A connec-
tion (σ(L), σ(L)) of first-order literals is complementary under a (first-order)
substitution σ iff their arguments are identical under σ.

Definition 5.3: Let M be a matrix, C,C1, C2 be clauses, L,L be literals, P be a
path, and σ be a substitution. The axiom and the rules of the connection calculus
for first-order logic are given in Figure 3. The extension rule is splitted into two
versions: the usual one for variable-free clauses C and a new one extension∗ for
first-order clauses C, i.e. clauses which contain variables. A matrix M is prov-
able iff there is a substitution σ, a derivation for M in the connection calculus
whose leaves are axioms, and all connections are complementary under σ.
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({},M, P )
axiom

(C, M, {})
M

for some positive C∈M start rule

(C\L,M, P ) for some L∈C, L∈P
(C, M, P ) with (σ(L), σ(L)) complementary

reduction rule

(C\L, M, P ) (C1\L,M\C1, P∪{L}) for some L∈C, C1∈M, L∈C1

(C, M, P ) with (σ(L), σ(L)) complem.
extension rule

(C\L,M,P ) (C2\L,M, P∪{L}) for some L∈C,C1∈M, L∈C2

(C, M, P ) with (σ(L), σ(L)) complem.
and C2 is a copy of C1

extension∗ rule

Figure 3: The connection calculus for first-order logic

The calculus slightly differs from the one presented in Bibel (1987) in the way
copies of clauses are made.

Lemma 5.4: A (first-order) formula F is valid, iff the matrix M of F is provable
in the first-order connection calculus.

Proof: See Bibel (1987). 2

Definition 5.4: Like for the propositional case we can transform the first-order
calculus into a formula CoCalc 1st (which has already been simplified):

∀M [prove (M) ⇐ ∃C∈M (positive(C) ∧ prove(C,M, {}) ) ]
∧ ∀M, P [prove ({},M, P )]
∧ ∀C, M,P [prove (C,M, P ) ⇐ ∃L∈C ∃L (compl(σ(L), σ(L)) ∧ (L∈P ∨
∃C1∈M ∃C2 (copy(C1, C2) ∧ L∈C2 ∧ C3=C2\L ∧ ( (prop(C2) ∧ M1=M\C1)
∨ (¬prop(C2)∧M1=M) ) ∧ prove(C3,M1, {L}∪P ) ) ) ∧ prove(C\L,M, P ) ) ]

where copy(C1, C2) succeeds iff the clause C2 is a copy of C1 where all variables in
C2 have been renamed. prop(C2) succeeds iff C2 is a propositional or variable-free
clause.

Lemma 5.5: A matrix M is provable iff there is a substitution σ so that the
formula CoCalc 1st ⇒ prove(M) is valid.

Proof: The proof is similar to the propositional case, i.e. we show by structural
induction that there is a proof for M in the connection calculus iff there is a
proof for CoCalc 1st ` prove(M) in the sequent calculus LK under σ. 2

¶Assuming sound unification for propositional logic is not necessary, but simplifies the proof.
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Lemma 5.6: The formula CoCalc 1st⇒prove(M) is valid for the matrix M and
some substitution σ iff prove(M) succeeds for the leanCoP program shown in
Section 2.

Proof: The formula CoCalc 1st is equivalent to leanCoP without the added ar-
guments/predicates to restrict the search depth. In addition to the propositions
given in the proof of Lemma 5.3 the following hold:

1. prove(C, M, {}) is true iff the goal “prove([!],[[-!|C]|M1],[])” suc-
ceeds with C∈M and M1=M\C. The start step implemented in Prolog uses
a variable-free start clause C only once which will reduce the search space.

2. copy(C1, C2) is true iff the goal “copy_term(C1,C2)” succeeds.

3. copy(C1, C2)∧ ((prop(C2), q(...))∨ (¬prop(C2), r(...))) is true iff copy_term

(C1,C2),(C1==C2 -> q(...) ; r(...)) succeeds.

4. The substitution σ is calculated implicitly by Prolog.

5. Predicates within a (declarative) Prolog program can be reordered.

6. The goal “(-NegLit=Lit;-NegLit\=Lit,-Lit=NegLit), ...” succeeds iff
“(-NegLit=Lit;-Lit=NegLit) -> ...” (which contains an implicit cut)
succeeds.

Sound unification has to be used in Prolog. Finally we show that Prolog’s depth-
first search is complete for the leanCoP program: prove(M,I) terminates for
every matrix M and path limit I. Similar to the propositional case we define
the size of prove(C,M,P,I) as a tuple, i.e. #(C,M,P, I) :=(|C|+|M |, |P |) with
|M |:= ∑

c∈M |c|. For each call the first element of #(C, M,P, I) decreases or the
second one increases. Whenever the first element does not decrease, i.e. |P | is
increased, it is checked whether |P | is smaller than the given path limit I. Since
|C|+|M | is non-negative, every goal prove(C,M,P,I) terminates and therefore
prove(M,I) terminates. Performing iterative deepening on I yields completeness
for the first-order case. 2

Theorem 5.2: Let F be a formula and M its matrix. The formula F is valid iff
prove(M) succeeds for the Prolog program leanCoP shown in Section 2.

Proof: Follows immediately from Lemma 5.4, Lemma 5.5, and Lemma 5.6. 2

6. Conclusion, Related Work and Outlook

We have presented a compact Prolog theorem prover for first-order (clause) logic
which implements the basic connection calculus. It is sound, complete, and a
decision procedure for propositional logic. Due to the compact code the program
can easily be modified for special purposes or applications. On the other hand the
Prolog program gives a short declarative description of the connection calculus.
The goal-oriented approach yields an astonishing performance, in particular for
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Horn problems without equality. We ran leanCoP on a subset of the TPTP
library and compared its performance with the resolution-based prover Otter,
the compilation-based prover Pttp, and the tableau-based prover leanTAP . Even
though the performance of Otter, a much larger and sophisticated system, is
in general better, leanCoP is able to solve several difficult problems for which
Otter does not find a proof. Pttp is a much smaller implementation, though
the source code (including comments) still fills about 18 pages. It translates
a given set of clauses into a Prolog program and then uses Prolog’s inference
system to carry out the actual proof search. This yields an inference rate which
is an order of magnitude higher than the inference rate achieved with leanCoP.
Still leanCoP and the refined version leanCoPi are able to solve almost as many
problems from the TPTP library as Pttp does. leanTAP ’s source code has a size
very similar to the size of leanCoP, but behaves rather poor on problems in clausal
form. For problems in non-clausal form leanTAP ’s performance is expected to be
much closer to that of leanCoP. We integrated a combined path- and inference-
bounded search into leanCoP which improves its behaviour on the TPTP library.
Finally we proved completeness and correctness by stepwisely transforming the
connection calculus into an equivalent declarative Prolog program.

Even though leanCoP is able to solve hard problems from the TPTP library, it
is not intended to be a state-of-the-art prover. To solve e.g. difficult mathematical
problems, theorem provers like Otter or E-Setheo (Stenz and Wolf, 2000) are
more appropriate. But for a lot of applications state-of-the-art performance is
not required. For example for interactive proof editors the integration of fully
automatic provers can assist humans to find proofs. Lean provers can easily be
integrated and modified by people who do not have a deep knowledge about fully
automatic provers. Since it is much easier (and faster) to understand a few lines
of Prolog code than several thousand lines of e.g. C code, lean theorem provers
are also very well suited for teaching purposes. Finally for the same reason it is
also much easier to verify completeness and correctness of lean theorem provers.

In Neugebauer and Schaub (1991) a pool-based connection calculus together
with an one-page Prolog program is described. Though the underlying calcu-
lus is similar, the actual implementation technique is different. Furthermore the
positive-start-clause technique as well as the restriction of clause copies to first-
order clauses are missing. In contrast to leanCoP it is not a decision procedure for
propositional formulas. Another lean prover for classical logic is Satchmo (Man-
they and Bry, 1988) which is a short model-generation prover written in Prolog.
Input clauses are modified within the Prolog database making an extensive use of
assert and retract necessary, which destroys the declarative semantics of the
Prolog program. Satchmo does essentially ground level reasoning and performs
rather poor on the problems in the TPTP library.

Due to its compact size new techniques can easily be integrated into leanCoP’s
code. This makes experimental evaluations of novel techniques very easy. We
have, for example, implemented a slightly modified version of leanCoP where the
given set of clauses is stored in Prolog’s database (i.e. one Prolog clause for each
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literal) instead of representing it as a Prolog list. This technique combines the
advantages of “Prolog technology” theorem provers (like e.g. Pttp) and “lean”
theorem provers by using Prolog’s fast inference machine to find connections
without losing readability, modifiability, and flexibility of lean implementations.
Experimental results showed that it improves the performance of leanCoP con-
siderably (e.g. SET016-7 from Table 3 is proved in 1.87 seconds instead of 183.31
seconds). On an average the timings for solving problems of the TPTP library
are about ten times faster. Other possible improvements include the integration
of factorization, lemmata or the folding up rule (Letz et al., 1994) as well as
avoiding the use of contrapositives (Baumgartner and Furbach, 1994).

We have also implemented a lean non-clausal version of leanCoP for proposi-
tional logic. It does not need the input formula to be in clausal form but preserves
its structure throughout the entire proof search, thus combining the advantages
of non-clausal tableau calculi and goal-oriented connection-based provers. The
extension to first-order logic though needs some efforts, since copying of ap-
propriate subformulas cannot be done so easily in a lean way. A non-clausal
connection-based prover can also be extended to some non-classical logics, like
intuitionistic, modal or linear logic (Otten and Kreitz, 1996; Kreitz and Otten,
1999). We only have to add an additional prefix unification procedure (Otten
and Kreitz, 1996) leaving the actual proof search procedure unchanged. Similar
approaches using labels or prefixes have already been used to implement lean
provers based on free-variable semantic tableaux for intuitionistic logic (Otten,
1997), modal logics (Beckert and Goré, 1997), and linear logic (Mantel and Ot-
ten, 1999). Thus leanCoP can serve as a basis for lean connection-based theorem
provers for logics for which up to now only lean tableau-based provers have been
realized.

The source code of leanCoP together with more information can be found at
http://www.leancop.de .
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