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Abstract. MleanCoP is a fully automated theorem prover for first-order modal
logic. The proof search is based on a prefixed connection calculus and an addi-
tional prefix unification, which captures the Kripke semantics of different modal
logics. MleanCoP is implemented in Prolog and the source code of the core proof
search procedure consists only of a few lines. It supports the standard modal log-
ics D, T, S4, and S5 with constant, cumulative, and varying domain conditions.
The most recent version also supports heterogeneous multimodal logics and out-
puts a compact prefixed connection proof. An experimental evaluation shows the
strong performance of MleanCoP.

1 Introduction

Modal logics extend the language of classical logic with the unary modal operators �
and �. They are used to represent the modalities ”it is necessarily true that” and ”it is
possibly true that”, respectively. The Kripke semantics of the standard unimodal logics
are defined by a set of worlds and a single binary accessibility relation between these
worlds. Multimodal logics consider a finite set of distinct modal operators �1, . . . ,�n

and �1, . . . ,�n, and the Kripke semantics is specified by a set of n accessibility rela-
tions. First-order modal logics extend propositional modal logics by domains, i.e. sets
of objects that are associated with each world, and the standard universal and exis-
tential quantifiers [5,8]. Modal logics have applications in, e.g., planning, natural lan-
guage processing, and program verification. Multimodal logics are in particular suitable
for representing knowledge and beliefs. Popular multimodal logics include temporal
and epistemic logic, which are used for program verification and representing dynamic
knowledge of different agents [7]. Even though many of these applications would ben-
efit from a higher degree of automation, the development of efficient fully automated
theorem provers for first-order modal logic is still in its infancy.

This paper presents one of the first theorem provers for first-order (multi)modal logic.
It is based on a modal connection calculus (Section 2). Whereas the underlying connec-
tion calculus provides a basis for an efficient proof search [4,11], prefixes are used to
directly encode sequences of accessible worlds of the Kripke semantics. The calculus
for the different modal logics differ only in the prefix unification, which respects the
accessibility relation of the modal logic under consideration. The modal connection
calculus is implemented in a very compact Prolog program (Section 3), which shows a
strong performance on the problems in the QMLTP library (Section 4).
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2 The Modal Connection Calculus

Syntax and Semantics. First-order modal formulae F are composed of atomic for-
mulae, the standard (classical) connectives ¬, ∧, ∨, ⇒, the modal operators �, �,
and the standard quantifiers ∀ and ∃. For multimodal logic, sets of modal operators
{�i,�i | i ∈ IN} are considered. The Kripke semantics of the standard modal logics are
defined by a set of worlds W and a binary accessibility relation Ri ⊆ W ×W between
these worlds [5,8]. In each single world w ∈ W the classical semantics applies to the
standard connectives and quantifiers, e.g.

∀xF /∃xF is true in world w iff F is true in world w for all/some object(s) x,
whereas the modal operators are interpreted with respect to accessible worlds, i.e.,

�iF/�iF is true in world w iff F is true in all/some world(s) w′, with (w,w′)∈Ri.
The properties of the accessibility relation Ri determine the particular modal logic. In
this paper the modal logics D, T, S4, and S5 are considered. Their accessibility relation
is serial (D)1, reflexive (T), reflexive and transitive (S4), or an equivalence relation (S5).
The standard semantics is considered with rigid term designation, i.e. every term de-
notes the same object in every world, and terms are local, i.e. any ground term denotes
an existing object in every world.

Using Prefixes. A prefix is used to name a sequence of accessible worlds and is as-
signed to each literal L and each subformula of a given formula F . E.g., the prefixed
formula F : w1w2 denotes the fact that F is true in world w2 that is accessible from a
world w1. Similarly to free variables and Skolem terms used for quantified variables,
free “world variables” and “Skolem worlds” are used within prefixes [13]. This can be
explained by the fact that the semantics of the quantifiers resembles the semantics of the
modal operators (see the definitions given above). In the negation normal form �i adds
a Skolem world (prefix constant) to the prefix, whereas �i adds a world variable (prefix
variable). Depending on the modal logic (D, T, S4, or S5) and its accessibility relation,
variables can be substituted by exactly one prefix variable or constant (D), by at most
one prefix variable or constant (T), or by any sequence of prefix variables and constants
(S4). For the modal logic S5 only the last element of every prefix is considered.

In Fitting’s modal tableau calculi [5,8], prefixes of literals that close a branch need
to denote the same world, i.e., they need to be identical. Similarly to term unification
for (first-order) terms, this is achieved by a prefix unification during the proof search.
This unification problem is a special case of string unification that takes the prefix prop-
erty, i.e. the form of the prefixes, and the accessibility relation of the modal logic into
account. For D and S5 the prefix unification is straightforward and there is only one
most general unifier. For T and S4 prefix unification procedures that calculate minimal
(finite) sets of most general unifiers were developed as well [10,13].

For (heterogeneous) multimodal logics each prefix constant and variable is marked
with the index i of the corresponding modal operator �i or �i. Prefix constants and
variables can only be assigned to variables with the same index, and the modal logic
assigned to each index i has to be taken into account. Modal operators with different in-
dices are independent from each other, i.e. interaction axioms must be added explicitly.

1 A relation R ⊆W ×W is serial iff for all w1 ∈W there is some w2 ∈W with (w1,w2) ∈ R.



MleanCoP: A Connection Prover for First-Order Modal Logic 271

The Modal Connection Calculus. The connection calculus [4] is already successfully
used for automated theorem proving in first-order classical and first-order intuitionistic
logic [10,11]. In order to adapt the calculus to modal logic, prefixes are added to all
literals. The axiom and the rules of the modal connection calculus are given in Fig-
ure 1. M = {C1, . . . ,Cm} is a prefixed matrix, i.e., a set of clauses where each clause
Ci={L1 : p1, . . . ,Ln : pn} is a set of prefixed literals, i.e., pi is the prefix of the literal
Li. The subgoal clause C and the active path Path are sets of (prefixed) literals or ε; C1

and C2 are clauses. A connection {L1 : p1,L2 : p2} is σ -complementary for a term sub-
stitution σQ and a prefix substitution σM iff σQ(L1) = σQ(L2) and σM(p1) = σM(p2),
where L2 is the complement of L2. These substitutions are rigid, i.e. they are applied to
the whole derivation, and calculated by algorithms for term and prefix unification.

A modal connection proof for the prefixed matrix M is a derivation for ε,M,ε , with
admissible substitutions σQ and σM . Substitutions are admissible if they respect the
accessibility relation and the domain condition. The accessibility relation depends on
the logic and is captured in the specific prefix unification for each modal logic. The
domain condition ensures that if a Skolem term t is assigned to a variable x, then t and x
need to exist in the same world. This property holds if the prefix of (the quantifier of) t
is an initial string of the prefix of (the quantifier of) x for cumulative domains, or if these
prefixes are equal for varying domains; there is no restriction for constant domains.

For example, the prefixed matrix of the modal formula �∀xPx ⇒ �∀y�Py is M1=
{{¬Px : W1}, {Pc : w2w3}} in which c is a Skolem term and w2 and w3 are prefix con-
stants. The following derivation for M1 is a modal connection proof for the modal logics
S4 and S5 with constant and cumulative domains (the arc marks the only connection).

{},M1,{Pc:w2w3} axiom {},M1,{} axiom

{Pc :w2w3},{{¬Px :W1},{Pc :w2w3}},{}
extension

ε,{{¬Px : W1},{Pc : w2w3}},ε
start

σQ(x) = c
σM(W1)=w2w3 (=w3 for S5)

(the prefix of x is w2w3 and the
prefix of c is w2)

The modal connection calculus is based on a clausal matrix characterization of log-
ical validity [13], which is a slightly adapted version of the original (non-clausal) ma-
trix characterization [15]. In order to simplify the implementation a Skolemization is
used not only for eigenvariables but also for prefix constants. A similar approach is
already used for intuitionistic logic [10]. Thus, the irreflexivity test of the reduction or-
dering [15] is realized by the occurs check of the term and prefix unification procedures.

axiom {},M,Path
start

C2,M,{}
ε, M, ε

and C2 is copy of C1∈M

reduction
C,M,Path∪{L2: p2}

C∪{L1: p1},M,Path∪{L2: p2} {L1: p1,L2: p2} is σ -complementary

extension
C2\{L2: p2},M,Path∪{L1: p1} C,M,Path

C∪{L1: p1},M,Path
C2 is a copy of C1∈M, L2:p2∈C2,
{L1:p1,L2:p2} is σ -complementary

Fig. 1. The connection calculus for first-order modal logic
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3 The Implementation

MleanCoP implements the modal connection calculus presented in Section 2. Ver-
sion 1.3 of MleanCoP features the following enhancements compared to version 1.2
[2,13]: support for heterogeneous multimodal logics, output of a compact modal con-
nection proof, support for the modal TPTP syntax, integration of the strategy scheduling
into the shell script, and an additional check of the domain condition in the core prover.
Furthermore, version 1.3 of MleanCoP does not only support ECLiPSe Prolog, but also
SWI and SICStus Prolog. The total size of the shell script and the four files containing
the Prolog source code is less than 29 KB. MleanCoP is available under the GNU Gen-
eral Public License and can be downloaded at http://www.leancop.de/mleancop/ .

Invoking and Preprocessing. The MleanCoP prover is invoked by the command
./mleancop.sh <problem file> [<time limit>]

which starts the proof search for the modal formula in the file <problem file>. The op-
tional <time limit> is used to control the fixed strategy scheduling. If the problem file
contains a formula in the modal TPTP syntax [14], it is translated into the MleanCoP
syntax. Afterwards, the formula is translated into a prefixed (clausal) matrix, i.e., pre-
fixes are added to all literals in the matrix; no other simplifications are carried out in this
step. The prefixed matrix is stored in Prolog’s database and represented by the predicate
lit/3. An optional definitional clausal form translation reduces the number of possible
connections and might prune the search space significantly.

The Modal Connection Calculus. The implementation of the core proof search pro-
cedure extends the automated theorem prover leanCoP for first-order classical logic
[10,11] by adding prefixes to literals and a prefix unification algorithm for each consid-
ered modal logic. Furthermore, each clause is annotated with a list that contains term
variables together with their prefixes in order to check the domain condition. The Pro-
log source code of the MleanCoP 1.3 core prover is shown in Figure 2. The underlined
code was added to leanCoP 2.1; no other modifications were done. The open subgoal
C and the active path Path in the modal connection calculus of Figure 1 are represented
by the Prolog lists Cla and Path, respectively. Atoms are represented by Prolog atoms,
term (and prefix) variables by Prolog variables and negation by “-”. The substitutions
σQ and σM are stored implicitly by Prolog.

The predicate prove(PathLim,Set,Proof) (lines a–g) implements the start rule.
PathLim is the maximum size of the active path used for iterative deepening, Set is
a list of options used to control the proof search, and Proof contains the returned
connection proof. First, MleanCoP performs a classical proof search, afterwards, the
domain condition is checked ( domain_cond/1 ) and the collected prefixes are unified
( prefix_unify/1 ) (line g). These are the only external predicates called during the ac-
tual proof search. The implementations of the prefix unifications for the modal logics
D, T, S4, and S5 need between 2 to 17 lines of Prolog code; the domain condition is
implemented by another 15 lines of code. For multimodal logic, prefix constants and
variables are marked with the index of the corresponding modal operator. Prefixes are
divided into sections and unified according to the modal logic assigned to their indices.
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(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

prove(PathLim,Set,Proof) :-
( \ +member(scut,Set) ->

prove([(-(#)):(-[])],[],PathLim,[],PreSet,FreeV1,Set,[Proof]) ;
lit((#):_,FV:C,_) ->
prove(C,[(-(#)):(-[])],PathLim,[],PreSet,FreeV,Set,Proof1),
Proof=[C|Proof1], append(FreeV,FV,FreeV1) ),
domain_cond(FreeV1), prefix_unify(PreSet).

prove(PathLim,Set,Proof) :-
member(comp(Limit),Set), PathLim=Limit -> prove(1,[],Proof) ;
(member(comp(_),Set);retract(pathlim)) ->
PathLim1 is PathLim+1, prove(PathLim1,Set,Proof).

prove([],_,_,_,[],[],_,[]).
prove([Lit:Pre|Cla],Path,PathLim,Lem,[PreSet,FreeV],Set,Proof) :-

Proof=[[[NegLit:PreN|Cla1]|Proof1]|Proof2],
\ + (member(LitC,[Lit:Pre|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

( member(LitL,Lem), Lit:Pre==LitL, Cla1=[], Proof1=[],
PreSet3=[], FreeV3=[]
;
member(NegL:PreN,Path), unify_with_occurs_check(NegL,NegLit),
Cla1=[], Proof1=[],
\ + \ + prefix_unify([Pre=PreN]), PreSet3=[Pre=PreN], FreeV3=[]
;
lit(NegLit:PreN,FV:Cla1,Grnd1),
( Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\ + pathlim -> assert(pathlim), fail ),
\ + \ + ( domain_cond(FV), prefix_unify([Pre=PreN]) ),

prove(Cla1,[Lit:Pre|Path],PathLim,Lem,PreSet1,FreeV1,Set,Proof1),
PreSet3=[Pre=PreN|PreSet1], append(FreeV1,FV,FreeV3)

),
( member(cut,Set) -> ! ; true ),
prove(Cla,Path,PathLim,[Lit:Pre|Lem],PreSet2,FreeV2,Set,Proof2),
append(PreSet3,PreSet2,PreSet), append(FreeV2,FreeV3,FreeV).

Fig. 2. Source code of the MleanCoP core prover

The predicate prove(Cla,Path,PathLim,Lem,[PreSet,FreeV],Set,Proof) imple-
ments the axiom (line 1), the reduction rule (lines 9–11, 21–22) and the extension rule
(lines 13, 16–18, 21–22) of the modal connection calculus in Figure 1. A weak prefix
unification (and domain check) is carried out for the current connection (line 11 and 16);
double negation prevents any variable bindings. If the proof search for the current path
limit fails and this limit was actually reached (lines 14–15), then PathLim is increased
and the proof search restarts with an increased path limit (lines h–k). MleanCoP uses a
few additional effective techniques already used in the classical prover leanCoP: regu-
larity (line 4), lemmata (lines 6–7), and restricted backtracking [11] (line 20). For the
example formula from Section 2 the MleanCoP core prover is invoked by

prove((# all X: p(X) => # all Y: # p(Y)),Proof).

which is (internally) translated into the prefixed matrix
[[]:[p(4^[]^[3^[]]):[3^[],5^[]]],[[X,[W]]]:[-(p(X)):-([W])]]

and returns the modal prefixed connection proof (for S4 with cumulative domains)
Proof = [[p(4^[]^[3^[]]):[3^[], 5^[]]],

[[-p(4^[]^[3^[]]): -[[3^[], [5^[]]]]]]]

where X is a term variable, 4^[]^[3^[]] is a Skolem term; W is a prefix variable for the
world W1, 3^[] and 5^[] are prefix constants for the worlds w2 and w3, respectively.
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4 Experimental Evaluation

The modal connection prover MleanCoP described in Section 3 was tested on all 580
unimodal and all 20 multimodal problems of version 1.1 of the QMLTP library [14].
All tests were conducted on a 3.4 GHz Xeon system with 4 GB of RAM running
Linux 2.6.24 and ECLiPSe Prolog 5.10. The CPU time limit for all proof attempts
was set to 100 seconds.

Table 1. Results on the unimodal problems (varying/cumul./constant) of the QMLTP library

MleanSeP MleanTAP Satallax ————— MleanCoP —————
Logic (proved) (proved) (proved) (proved) (< 1 sec) (refuted)

D – /130/129 100/120/135 113/133/159 186/207/224 160/178/193 273/247/222

T – /163/165 138/162/175 169/192/212 223/250/270 211/236/253 159/132/114

S4 – /190/189 169/205/220 206/237/258 288/349/364 259/304/320 127/96/83

S5 – / – / – 219/272/272 245/294/301 359/436/436 321/388/388 94/41/41

Table 1 shows the results for unimodal logic for the theorem provers MleanSeP 1.2,
MleanTAP 1.3, Satallax 2.2, and MleanCoP 1.3. The columns contain the number of
proved problems (proved), and for MleanCoP also the number of problems proved
within 1 second (< 1 sec) and the number of refuted problems (refuted). For each logic
the results are given for the varying/cumulative/constant domain conditions.

MleanSeP implements the standard modal sequent calculus for several unimodal
logics with cumulative domains.2 It performs an analytic proof search and uses free
variables with a dynamic Skolemization. For the constant domain variants the Bar-
can formulae are added. MleanTAP is a compact implementation of a prefixed tableau
calculus for several unimodal logics.3 Similarly to MleanCoP it uses prefixes and an
additional prefix unification procedure. Hence, MleanTAP can easily be extended to
multimodal logic by integrating the multimodal prefix unification of MleanCoP 1.3.
Satallax [6] is a theorem prover for higher-order logic (HOL) and is used in combina-
tion with an embedding of first-order modal logic into simple type theory [2,3]. These
are currently the only available theorem provers for first-order modal logic. Instead of
Satallax, other theorem provers for HOL can be used as well, but Satallax shows the
strongest performance when using the embedding into HOL [2].

MleanCoP 1.3 proves significantly more problems than any of the other theorem
provers for first-order modal logic. This is true, even if the time limit for MleanCoP is
reduced to one second. Satallax comes second, proving more problems than MleanSeP
and MleanTAP; it also refutes a high number of problems and can deal with many more
modal logics, such as the modal logic K [2].

MleanCoP 1.3 solves 17 of the 20 multimodal problems included in the QMLTP
library; all of these problems are solved within a fraction of a second.

2 MleanSeP can be obtained at http://www.leancop.de/mleansep/
3 MleanTAP can be obtained at http://www.leancop.de/mleantap/
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5 Conclusion

Despite the fact that modal logics are considered as some of the most important non-
classical logics and numerous calculi were developed, the availability of actual im-
plementations of fully automated theorem provers for first-order modal logic is very
limited. Extending existing theorem provers for propositional modal logic, e.g. mod-
leanTAP [1] or MSPASS [9], to first-order modal logic is not straightforward [2].

The modal connection calculus extends the classical clausal connection calculus by
prefixes and additional prefix unifications, which directly encode the accessibility re-
lations of the different modal logics. MleanCoP is based on the classical connection
prover leanCoP and extended by prefix unifications for the unimodal logics D, T, S4,
S5 and for the (normal) multimodal logics. The returned modal connection proof con-
tains all necessary information to translate it back into a more readable form.

Future work includes the extension of the classical non-clausal connection calcu-
lus [12] to first-order modal logic, optimizing the prefix unifications, and extending the
prefix unification to other standard modal logics.
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