
nanoCoP: A Non-clausal Connection Prover

Jens Otten?

Department of Informatics, University of Oslo
PO Box 1080 Blindern, 0316 Oslo, Norway

jeotten@leancop.de

Abstract. Most of the popular efficient proof search calculi work on formulae
that are in clausal form, i.e. in disjunctive or conjunctive normal form. Hence,
most state-of-the-art fully automated theorem provers require a translation of the
input formula into clausal form in a preprocessing step. Translating a proof in
clausal form back into a more readable non-clausal proof of the original for-
mula is not straightforward. This paper presents a non-clausal theorem prover for
classical first-order logic. It is based on a non-clausal connection calculus and
implemented with a few lines of Prolog code. By working entirely on the orig-
inal structure of the input formula, the resulting non-clausal proofs are not only
shorter, but can also be more easily translated into, e.g., sequent proofs. Further-
more, a non-clausal proof search is more suitable for some non-classical logics.

1 Introduction

Automated theorem proving in classical first-order logic is a core research area in the
field of Automated Reasoning. Most efficient fully automated theorem provers imple-
ment proof search calculi that require the input formula to be in a clausal form, i.e.
disjunctive or conjunctive normal form.In the core first-order category “FOF” at the
most recent ATP competition, CASC-25, only the Muscadet prover implements a proof
search that works on the original formula structure. First-order formulae that are not in
clausal form are translated into clausal form in a preprocessing step. While the use of a
clausal form technically simplifies the proof search and the required data structures, it
also has some disadvantages. The standard translation into clausal form as well as the
definitional translation [19], which introduces definitions for subformulae, introduce a
significant overhead for the proof search [14]. Furthermore, a translation into clausal
form modifies the structure of the original formula and the translation of the clausal
proof back into one of the original formula is not straightforward [20]. On the other
hand, fully automated theorem provers that use non-clausal calculi, such as standard
tableau or sequent calculi, are usually not suitable for an efficient proof search.

The present paper describes the non-clausal connection prover nanoCoP for clas-
sical first-order logic. By performing the proof search on the original structure of the
input formula, it combines the advantages of more natural non-clausal provers with
a more efficient goal-oriented connection-based proof search. The prover is based on
a non-clausal connection calculus for classical first-order logic [15] (Sec. 2) that gen-
eralizes the clausal connection (tableau) calculus [4, 5]. This non-clausal calculus is
implemented in a very compact way (Sec. 3) following the lean methodology. An ex-
perimental evaluation (Sec. 4) shows a solid performance of nanoCoP.
? The author is also affiliated with the Institut für Informatik at the University of Potsdam.

2 Jens Otten

2 The Non-clausal Connection Calculus

The standard notation for first-order formulae is used. Terms (denoted by t) are built up
from functions (f ,g,h, i), constants (a,b,c), and variables (x,y,z). An atomic formula
(denoted by A) is built up from predicate symbols (P,Q,R,S) and terms. A (first-order)
formula (denoted by F,G,H) is built up from atomic formulae, the connectives ¬, ∧, ∨,
⇒, and the standard first-order quantifiers ∀ and ∃. A literal L has the form A or ¬A. Its
complement L is A if L is of the form ¬A; otherwise L is ¬L.

A connection is a set {A,¬A} of literals with the same predicate symbol but different
polarity. A term substitution σ assigns terms to variables. A formula in clausal form
has the form ∃x1 . . .∃xn(C1∨ . . .∨Cn), where each clause Ci is a conjunction of literals
L1, . . . ,Lmi . It is usually represented as a set of clauses {C1, . . . ,Cn}, which is called a
(clausal) matrix. The polarity 0 or 1 is used to represent negation in a matrix, i.e. literals
of the form A and ¬A are represented by A0 and A1, respectively,

The non-clausal connection calculus uses non-clausal matrices. In a non-clausal
matrix a clause consists of literals and (sub)matrices. Let F be a formula and pol be a
polarity. The non-clausal matrix M(F pol) of a formula F pol is a set of clauses, in which
a clause is a set of literals and (sub-)matrices, and is defined inductively according
to Table 1. In Table 1, x∗ is a new variable, t∗ is the skolem term f ∗(x1, . . . ,xn) in
which f ∗ is a new function symbol and x1, . . . ,xn are the free variables in ∀xG or ∃xG.
The non-clausal matrix M(F) of a formula F is the matrix M(F0). In the graphical
representation its clauses are arranged horizontally, while the literals and (sub-)matrices
of each clause are arranged vertically. For example, the formula F#

P(a)∧(¬((Q(f (f (c)))∧∀x(Q(f (x))⇒Q(x)))⇒Q(c))∨∀y(P(y)⇒P(g(y))))⇒∃zP(g(g(z)))

has the simplified (i.e. redundant brackets are removed) non-clausal matrix M#=M(F#):

{{P(a)1},{{{Q(f (f (c)))1},{Q(f (x))0,Q(x)1},{Q(c)0}},{{P(y)0,P(g(y))1}}},{P(g(g(z)))0}} .

The graphical representation of the matrix M# is depicted in Figure 1. It already con-
tains two clause copies using the fresh variables x′ and y′ and represents a non-clausal
connection proof, in which the literals of each connection are connected with a line,
using the substitution σ with σ(x) = f (c), σ(x′) = c, σ(y) = σ(z) = a, σ(y′) = g(a).

The axiom and the rules of the non-clausal connection calculus [15] are given in
Fig. 2. It works on tuples “C,M,Path”, where M is a non-clausal matrix, C is a (subgoal)
clause or ε and (the active) Path is a set of literals or ε; σ is a term substitution. A non-
clausal connection proof of M is a non-clausal connection proof of ε,M,ε .

Table 1. The definition of the non-clausal matrix

type F pol M(F pol)

atomic A0 {{A0}}
A1 {{A1}}

α (¬G)0 M(G1)
(¬G)1 M(G0)

(G∧H)1 {{M(G1)},{M(H1)}}
(G∨H)0 {{M(G0)},{M(H0)}}
(G⇒ H)0 {{M(G1)},{M(H0)}}

type F pol M(F pol)

β (G∧H)0 {{M(G0),M(H0)}}
(G∨H)1 {{M(G1),M(H1)}}
(G⇒ H)1 {{M(G0),M(H1)}}

γ (∀xG)1 M(G[x\x∗]1)
(∃xG)0 M(G[x\x∗]0)

δ (∀xG)0 M(G[x\t∗]0)
(∃xG)1 M(G[x\t∗]1)

nanoCoP: A Non-clausal Connection Prover 3

[P(a)1]

[[

Q(f (f (c)))1] [Q(f (x))0

Q(x)1

][
Q(f (x′))0

Q(x′)1

] [
Q(c)0]][[

P(y)0

P(g(y))1

] [
P(y′)0

P(g(y′))1

]]
 [P(g(g(z)))0]

Fig. 1. Graphical representation of a non-clausal matrix and its non-clausal connection proof

The non-clausal connection calculus for classical logic is sound and complete [15].
It has the same axiom, start rule, and reduction rule as the formal clausal connection
calculus [17]. The extension rule is slightly modified and a decomposition rule is added.
A few additional concepts are required as follows in order to specify which clauses C1
can be used within the non-clausal extension rule. See [15] for details and examples.

A clause C contains a literal L if and only if (iff) L∈C or C′ contains L for a matrix
M′∈C with C′∈M. A clause C is α-related to a literal L iff {C′,C′′}⊆M′ for a clause C′

and matrix M′ such that C′ contains L and C′′ contains C. A copy of the clause C in the
matrix M is made by renaming all free variables in C. M[C1\C2] denotes the matrix M,
in which the clause C1 is replaced by the clause C2. C′ is a parent clause of C iff M′∈C′

and C∈M′ for some matrix M′. C is an extension clause (e-clause) of the matrix M with
respect to a set of literals Path, only if either (a) C contains a literal of Path, or (b) C is
α-related to all literals of Path occurring in M and if C has a parent clause, it contains
a literal of Path. In the β -clause of C2 with respect to L2, denoted by β -clauseL2(C2),
L2 and all clauses that are α-related to L2 are deleted from C2, as these clauses do not
need to be considered in the subgoal clause C3 in the premise of the extension rule.

The analytic, i.e. bottom-up proof search in the non-clausal calculus is carried out
in the same way as in the clausal calculus. Additional backtracking might be required
when choosing C1 in the decomposition rule; no backtracking is required when choos-
ing M1. The rigid term substitution σ is calculated whenever a connection is identified
in an application of the reduction or extension rule. On formulae in clausal form, the
non-clausal connection calculus coincides with the clausal connection calculus. Opti-
mization techniques, such as positive start clauses, regularity, lemmata and restricted
backtracking, can be employed in a way similar to the clausal connection calculus [14].

Axiom (A)
{},M,Path

Start (S)
C2,M,{}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M,Path∪{L2}
and σ(L1)=σ(L2)

Extension (E)
C3,M[C1\C2],Path∪{L1} C,M,Path

C∪{L1},M,Path

and C3:=β -clauseL2(C2), C2
is copy of C1, C1 is e-clause of
M wrt. Path∪{L1}, C2 con-
tains L2 with σ(L1)=σ(L2)

Decomposition (D)
C∪C1,M,Path

C∪{M1},M,Path
and C1∈M1

Fig. 2. The non-clausal connection calculus

4 Jens Otten

3 The Implementation

The implementation of the non-clausal connection calculus of Fig. 2 follows the lean
methodology [3], which is already used for the clausal connection prover leanCoP [17].
It uses very compact Prolog code to implement the basic calculus and adds a few es-
sential optimization techniques in order to prune the search space. The resulting natural
nonclausal connection prover nanoCoP is available under the GNU General Public Li-
cense and can be downloaded at http://www.leancop.de/nanocop/ .

Non-clausal Matrices. In a first step the input formula F is translated into a non-
clausal (indexed) matrix M(F) according to Table 1; redundant brackets of the form
“{{. . .}}” are removed [15]. Additionally, every (sub-)clause (I,V) :C and (sub-)matrix
J :M is marked with a unique index I and J; clause C is also marked with a set of vari-
ables V that are newly introduced in C but not in any subclause of C. Atomic formulae
are represented by Prolog atoms, term variables by Prolog variables and the polarity
1 by “-”. Sets, e.g. clauses and matrices, are represented by Prolog lists (representing
multisets). For example, the matrix M# from Sec. 2 is represented by the Prolog term
[(1^K)^[]:[-(p(a))],

(2^K)^[]:[3^K:[(4^K)^[]:[-(q(f(f(c))))],(5^K)^[X]:[q(f(X)), -(q(X))],

(6^K)^[]:[q(c)]], 7^K:[(8^K)^[Y]:[p(Y), -(p(g(Y)))]]],

(9^K)^[Z]:[p(g(g(Z)))]]

in which the Prolog variable K is used to enumerate clause copies. In the second step the
matrix M = M(F) is written into Prolog’s database. For every literal Lit in M the fact

lit(Lit,ClaB,ClaC,Grnd)

is asserted into the database where ClaC ∈M is the (largest) clause in which Lit occurs
and ClaB is the β -clause of ClaC with respect to Lit. Grnd is set to g if the smallest
clause in which Lit occurs is ground, i.e. does not contain any variables; otherwise
Grnd is set to n. Storing literals of M in the database in this way is called lean Prolog
technology [14] and integrates the advantages of the Prolog technology approach [23]
into the lean theorem proving framework. No other modifications or simplifications of
the original formula (structure) are done during these two preprocessing steps.

Non-clausal Proof Search. The nanoCoP source code is shown in Fig. 3. It uses only
the standard Prolog predicates member, append, length, assert, retract, copy_term,
unify_with_occurs_check, and the additional predicate positiveC(Cla,Cla1), which
returns the clause Cla1 in which all clauses that are not positive in Cla are deleted. A
clause is positive if all of its elements (matrices and literals) are positive; a matrix is
positive if it contains at least one positive clause; a literal is positive if its polarity is 0.

The predicate prove(Mat,PathLim,Set,Proof) implements the start rule (lines 1–
8). Mat is the matrix generated in the preprocessing step. PathLim is the maximum size
of the active path used for iterative deepening, Set is a list of options used to control
the proof search, and Proof contains the returned connection proof. Start clauses are
restricted to positive clauses (line 2) before the actual proof search is invoked (line 3).
If no proof is found with the current active path limit PathLim and this limit was reached,
then PathLim is increased and the proof search starts over again (lines 4–8).

nanoCoP: A Non-clausal Connection Prover 5

The predicate prove(Cla,Mat,Path,PathI,PathLim,Lem,Set,Proof) implements
the axiom (line 9), the decomposition rule (lines 10–14), the reduction rule (lines 15–18,
21–22, 31), and the extension rule (lines 15–18, 24–42) of the non-clausal connection
calculus in Fig. 2. Cla, Mat, and Path represent the subgoal clause C, the (indexed) ma-
trix M and the (active) Path. The indexed path PathI contains the indices of all clauses
and matrices that contain literals of Path; it is used for calculating extension clauses.
The list Lem is used for the lemmata rule and contains all literals that have been “solved”
already [14]. Set is a list of options and may contain the elements “cut” and “comp(I)”
for I∈ IN, which are used to control the restricted backtracking technique [14]. This
prove predicate succeeds iff there is a connection proof for the tuple (Cla, Mat, Path)
with |Path|< PathLim. In this case Proof contains a compact connection proof. The
input matrix Mat has to be stored in Prolog’s database (as explained above).

When the decomposition rule is applied, a clause Cla1 of the first matrix of the
subgoal clause [J:Mat|Cla] is selected (line 11). The search continues with clause
Cla1 (line 12) using the extended indexed path [I,J|PI], and the remaining elements
of Cla (line 13). For the reduction and extension rules the complement NegLit of the
first literal Lit of the subgoal clause is calculated (line 18) and used for the following
reduction and extension step. When the reduction rule is applied, it is checked whether
the active Path contains a literal NegL that unifies with NegLit (line 21). In this case the
proof search continues with the clause Cla for the premise of the reduction rule (line 31).
When the extension rule is applied, the predicate lit(NegLit,ClaB,Cla,Grnd1) is
called to find a clause in Prolog’s database that contains the complement NegLit of
the literal Lit (line 24). For this operation sound unification has to be switched on (in,
e.g., ECLiPSe Prolog this is done by calling “set_flag(occur_check,on)” before the
proof search starts). The predicate prove_ec calculates an appropriate extension clause
and returns its β -clause ClaB1 with respect to NegLit (line 27). The proof search con-
tinues with ClaB1 as new subgoal clause for the left premise of the extension rule with
the literal Lit added to the active Path (line 28), and with the remaining subgoal clause
Cla for the right premise (line 31). The substitution σ is stored implicitly by Prolog.

The predicate prove_ec(ClaB,Cla1,Mat,ClaB1,Mat1) is used to calculate exten-
sion clauses (lines 32–42). Starting with the (largest possible) extension clause Cla1, its
β -clause ClaB, and the current (indexed) matrix Mat, this predicate returns an appropri-
ate extension clause Cla, copies it into Mat and returns its β -clause ClaB1 and the new
matrix Mat1. The extension clause has to fulfil the conditions described in Sec. 2: it has
to be (a) large enough to contain a literal of Path or (b) small enough to be α-related to
all literals of Path occurring in Mat and again large enough that in case it has a parent
clause, this contains a literal of Path; in both cases the extension clause has to be large
enough such that the literal Lit unifies with the literal NegLit in the current matrix. As
an optimization only extension clauses that introduce new variables are considered.

Prolog depth-first search results in an incomplete proof search. In order to regain
completeness nanoCoP performs an iterative deepening on the size of the active path.
When the extension rule is applied and the extension clause is not ground, it is checked
whether the size K of the active Path exceeds the current path limit PathLim (line 25).
In this case the predicate pathlim is written into Prolog’s database (line 26) indicating
the need to increase the path limit if the proof search fails for the current path limit.

6 Jens Otten

nanoCoP uses additional optimization techniques that are already used in the clas-
sical (clausal) connection prover leanCoP [14]: regularity (line 17), lemmata (line 19),
and restricted backtracking (line 30). Regularity ensures that no literal occurs more than
once in the active path. The idea of lemmata (or factorization) is to reuse subproofs dur-
ing the proof search. Restricted backtracking is a very effective technique for pruning
the search space in connection calculi [14]. It is switched on if the list Set contains the
element “cut”. If it also contains “comp(I)” for I ∈ IN, then the proof search restarts
again without restricted backtracking if the path limit PathLim exceeds I.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)

(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)

% start rule
prove(Mat,PathLim,Set,[(I^0)^V:Cla1|Proof]) :-

member((I^0)^V:Cla,Mat), positiveC(Cla,Cla1), Cla1\=!,
prove(Cla1,Mat,[],[I^0],PathLim,[],Set,Proof).

prove(Mat,PathLim,Set,Proof) :-
retract(pathlim) ->
(member(comp(PathLim),Set) -> prove(Mat,1,[],Proof) ;

PathLim1 is PathLim+1, prove(Mat,PathLim1,Set,Proof)) ;
member(comp(_),Set) -> prove(Mat,1,[],Proof).

% axiom
prove([],_,_,_,_,_,_,[]).

% decomposition rule
prove([J:Mat1|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :- !,

member(I^_:Cla1,Mat1),
prove(Cla1,MI,Path,[I,J|PI],PathLim,Lem,Set,Proof1),
prove(Cla,MI,Path,PI,PathLim,Lem,Set,Proof2),
append(Proof1,Proof2,Proof).

% reduction and extension rules
prove([Lit|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :-

Proof=[[I^V:[NegLit|ClaB1]|Proof1]|Proof2], copy_term(Lit,LitV),
\+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit==LitL, ClaB1=[], Proof1=[]
;
member(NegL,Path), unify_with_occurs_check(NegL,NegLit),
ClaB1=[], Proof1=[]
;
lit(NegLit,ClaB,Cla1,Grnd1),
(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\+ pathlim -> assert(pathlim), fail),
prove_ec(ClaB,Cla1,MI,PI,I^V:ClaB1,MI1),
prove(ClaB1,MI1,[Lit|Path],[I|PI],PathLim,Lem,Set,Proof1)

),
((member(cut,Set);Lit==LitV) -> ! ; true),
prove(Cla,MI,Path,PI,PathLim,[Lit|Lem],Set,Proof2).

% extension clause (e-clause)
prove_ec((I^K)^V:ClaB,IV:Cla,MI,PI,ClaB1,MI1) :-

append(MIA,[(I^K1)^V1:Cla1|MIB],MI), length(PI,K),
(ClaB=[J^K:[ClaB2]|_], member(J^K1,PI),

unify_with_occurs_check(V,V1), Cla=[_:[Cla2|_]|_],
append(ClaD,[J^K1:MI2|ClaE],Cla1),
prove_ec(ClaB2,Cla2,MI2,PI,ClaB1,MI3),
append(ClaD,[J^K1:MI3|ClaE],Cla3),
append(MIA,[(I^K1)^V1:Cla3|MIB],MI1)
;
(\+member(I^K1,PI);V\==V1;V\=[]) ->
ClaB1=(I^K)^V:ClaB, append(MIA,[IV:Cla|MIB],MI1)).

Fig. 3. Source code of the nanoCoP prover

nanoCoP: A Non-clausal Connection Prover 7

4 Experimental Evaluation

These evaluations were conducted on a 3.4 GHz Xeon system with 4 GB of RAM
running Linux 3.13.0 and ECLiPSe Prolog 5.10, and a CPU time limit of 100 seconds.

The following formula Fn is a slightly extended version of the formula F# in Sec. 2,
where f n, gn, hn, and in are abbreviations for n nested applications of these functions:
Fn ≡ P(a) ∧ (¬((Q(f n(c))∧∀x(Q(f (x))⇒Q(x)))⇒ Q(c))
∨¬((R(hn(c))∧∀x(R(h(x))⇒R(x))) ⇒ R(c))∨¬((S(in(c))∧∀x(S(i(x))⇒S(x)))⇒ S(c))
∨ ∀y(P(y)⇒P(g(y)))) ⇒ ∃z P(gn(z)) .

Table 2 shows the results on this (valid) formula class for n=10, n=30, and n=90
for the following provers: the lean (non-clausal) tableau prover leanTAP [3], the res-
olution prover Prover9 [12], the superposition prover E [22] (using options “--auto
--tptp3-format”), leanCoP [17, 14], and nanoCoP. The leanCoP core prover with the
standard (“[nodef]”) and the definitional (“[def]”) translation into clausal form were
tested. For nanoCoP restricted backtracking was switched off (Set=[]). Times are
given in seconds; “size” is the number of nodes in the returned proof tree.

Table 2. Results on formula class Fn

leanTAP Prover9 E – leanCoP 2.2 – nanoCoP
n= 2.3 2009-02A 1.9 [nodef] [def] []

10 time (size) 0.17 (128) – 1.22 (2916) – – 0.09 (45)
30 time (size) – – 84.57 (57628) – – 0.12 (125)
90 time (size) – – – – – 0.42 (365)

Table 3 shows the test results on all 5051 first-order (FOF) problems in the TPTP
library v3.7.0 [24]. For leanTAP, leanCoP, and nanoCoP, the required equality axioms
were added in a preprocessing step (which is included in the timings). The full leanCoP
prover (“full”) additionally uses strategy scheduling [14]. For nanoCoP, a restricted
backtracking strategy, i.e. Set=[cut,comp(6)], was tested as well. The nanoCoP core
prover perform significantly better than both clausal form translations of the leanCoP
core prover. 40%/51% of the proofs found by nanoCoP (without restricted backtrack-
ing) are shorter than those of leanCoP [nodef]/[def], respectively; as many of these
problems are (mostly) in clausal form, 56%/47% of the proofs have the same size. The
nanoCoP proofs are up to 96%/74% shorter than those of leanCoP [nodef]/[def], re-
spectively. The classical version of the non-clausal connection prover JProver [21] has
a lower performance than leanTAP (also reflected in its intuitionistic performance [13]).

Table 3. Results on TPTP library v3.7.0

leanTAP Prover9 E —- leanCoP 2.2 —- —- nanoCoP 1.0 —-
2.3 2009-02A 1.9 [nodef] [def] “full” [] [cut,comp(6)]

proved 404 1611 2782 1134 1065 1710 1232 1485
0 to 1sec. 379 1285 2104 938 865 1215 1001 1172
1 to 10sec. 13 200 338 113 125 216 139 157

10 to 100sec. 4 126 340 83 75 279 92 156

8 Jens Otten

5 Conclusion

This paper presents nanoCoP, a non-clausal connection prover for classical first-order
logic. Using non-clausal matrices the proof search works directly on the original struc-
ture of the input formula. No translation steps to any clausal or other normal form are
required. This combines the advantages of more natural non-clausal tableau or sequent
provers with the goal-oriented efficiency of connection provers.

Even though the non-clausal inferences introduce a slight overhead, nanoCoP out-
performs both clausal form translations of the leanCoP core prover on a large set of
TPTP problems. It is expected that the integration of strategy scheduling will also out-
perform the “full” leanCoP prover. About half of the returned non-clausal proofs are up
to 96% shorter than their clausal counterparts. By using the standard translation, i.e. ap-
plying the distributive laws, the size of the resulting formula might grow exponentially
with respect to the size of the original formula, which is not feasible for some formulae.
The definitional translation [19] introduces definitions for subformulae, which results
in a significant overhead for the proof search as well [14]. Other clausal form transla-
tions that work well for resolution provers, e.g. the ones used in E or Flotter, have a
significant lower performance when used in with a connection prover [14].

Both clausal form translations modify the structure of the original formula, which
makes it difficult to translate the (clausal) proof back into a proof of the original for-
mula [20]. nanoCoP returns a compact non-clausal connection proof, which directly
represents a free-variable tableau proof. A connection in the nanoCoP proof corre-
sponds to a closed branch in the tableau calculus [7] or an axiom in the sequent cal-
culus [6]. The translation into, e.g., a sequent proof is straightforward, when skolem-
ization is seen as a way to encode the eigenvariable condition of the sequent calculus.
This close relationship to the sequent calculus makes nanoCoP an ideal tool to be used
within interactive proof systems, such as Coq, Isabelle, HOL or NuPRL. The compact
size of nanoCoP makes it also a suitable tool for the development of verifiably correct
software [18], as its correctness can be proven much more easily than that of a large
proof system consisting of several thousand lines of source code.

Only few research work investigates non-clausal connection calculi and their imple-
mentations. Other non-clausal calculi [1, 5, 8, 11] work only on ground formulae. For
first-order formulae, copies of subformulae have to be added iteratively, which intro-
duces a huge redundancy into the proof search, as already observed with JProver [21].
For an efficient proof search, clauses have to be added dynamically during the proof
search. Some older non-clausal implementations [9] are not available anymore.

Another important application of nanoCoP is its usage within non-classical logics,
such as intuitionistic or modal first-order logic, for which the use of a clausal form is
either not desirable or not possible. Hence, future work includes the combination of
the non-clausal approach with the prefix (unification) technique for some non-classical
logics, as already done for leanCoP [13, 16]. In order to improve performance, further
optimization techniques need to be integrated into nanoCoP, such as strategy schedul-
ing [14], learning [10] or variable splitting [2].

Acknowledgements. The author would like to thank Wolfgang Bibel for his helpful
comments on a preliminary version of this paper.

nanoCoP: A Non-clausal Connection Prover 9

References
1. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214 (1981)
2. Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Autom. Reasoning 38(1–3), 3–30

(2007)
3. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. J. Autom. Reasoning

15(3), 339–358 (1995)
4. Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)
5. Bibel, W.: Automated theorem proving. Artificial intelligence, F. Vieweg und Sohn, Wies-

baden, 2nd edn. (1987)
6. Gentzen, G.: Untersuchungen über das Logische Schließen. Mathematische Zeitschrift 39,

176–210, 405–431 (1935)
7. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook

of Automated Reasoning, vol. I, chap. 3, pp. 101–178. Elsevier Science B.V. (2001)
8. Hähnle, R., Murray, N.V., Rosenthal, E.: Linearity and regularity with negation normal form.

Theoretical Computer Science 328, 325–354 (2004)
9. Issar, S.: Path-focused duplication: A search procedure for general matings. In: Dietterich,

T.S.W. (ed.) AAAI-90. pp. 221–226. MIT Press (1990)
10. Kaliszyk, C., Urban, J.: FeMaLeCoP: Fairly efficient machine learning connection prover. In:

Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20. Lecture Notes in Artificial
Intelligence, vol. 9450, pp. 88–96. Springer (2015)

11. Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-classical logics.
J. UCS 5(3), 88–112 (1999)

12. McCune, W.: Release of Prover9 (2005), Mile high conference on quasigroups, loops and
nonassociative systems

13. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classi-
cal and intuitionistic logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
Lecture Notes in Artificial Intelligence, vol. 5195, pp. 283–291. Springer (2008)

14. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3), 159–182
(2010)

15. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLE-
AUX 2011. Lecture Notes in Artificial Intelligence, vol. 6793, pp. 226–241. Springer (2011)

16. Otten, J.: MleanCoP: A connection prover for first-order modal logic. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. Lecture Notes in Artificial Intelligence, vol. 8562,
pp. 269–276. Springer (2014)

17. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. Journal of Symbolic
Computation 36(1–2), 139–161 (2003)

18. Otten, J., Bibel, W.: Advances in connection-based automated theorem proving. In: Bowen,
J., Hinchey, M., Olderog, E.R. (eds.) Provably Correct Systems. Springer (to appear)

19. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symbolic
Computation 2(3), 293–304 (1986)

20. Reis, G.: Importing SMT and connection proofs as expansion trees. In: Proof Exchange for
Theorem Proving (PxTP). EPTCS, vol. 186, pp. 3–10 (2015)

21. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: Integrating connection-based theorem
proving into interactive proof assistants. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR
2001. Lecture Notes in Artificial Intelligence, vol. 2083, pp. 421–426. Springer (2001)

22. Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
23. Stickel, M.E.: A PROLOG technology theorem prover: Implementation by an extended PRO-

LOG compiler. J. Autom. Reasoning 4(4), 353–380 (1988)
24. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF and CNF

parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

