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Abstract. We present a clausal connection calculus for first-order in-
tuitionistic logic. It extends the classical connection calculus by adding
prefixes that encode the characteristics of intuitionistic logic. Our calcu-
lus is based on a clausal matrix characterisation for intuitionistic logic,
which we prove correct and complete. The calculus was implemented by
extending the classical prover leanCoP. We present some details of the
implementation, called ileanCoP, and experimental results.

1 Introduction

Automated reasoning in intuitionistic first-order logic is an important task within
the formal approach of constructing verifiable correct software. Interactive proof
assistants, like NuPRL [5] and Coq [2], use constructive type theory to formalise
the notion of computation and would greatly benefit from a higher degree of
automation. Automated theorem proving in intuitionistic logic is considerably
more difficult than in classical logic, because additional non-permutabilities in
the intuitionistic sequent calculus [8] increase the search space. In classical logic
(disjunctive or conjunctive) clausal forms are commonly used to simplify the
problem of copying appropriate subformulae (so-called multiplicities). Once a
formula is converted into clausal form multiplicities can be restricted to clauses.
For intuitionistic logic a validity-preserving clausal form does not exist.

An elegant way of encoding the intuitionistic non-permutabilities was given
by Wallen [30] by extending Bibel’s (non-clausal) characterisation of logical va-
lidity [3]. The development of proof calculi and implementations based on this
characterisation (e.g. [11, 21, 22, 25]) were restricted to non-clausal procedures,
making it difficult to use more established clausal methods (e.g. [3, 4, 13, 14]).

In this paper we present a clausal matrix characterisation for intuitionistic
logic. Extending the usual Skolemization technique makes it possible to adapt a
connection calculus that works on prefixed matrices in clausal form. It simplifies
the notation of multiplicities and the use of existing clausal connection-based
implementations for classical logic. Only a few changes are required to adapt the
classical prover leanCoP to deal with prefixed matrices.

The paper is organised as follows. In Section 2 the standard (non-clausal)
matrix characterisation is presented before Section 3 introduces a clausal charac-
terisation using Skolemization and a prefixed connection calculus. The ileanCoP



implementation with experimental results is described in Section 4. We conclude
with a summary and a brief outlook on further research in Section 5.

2 Preliminaries

We assume the reader to be familiar with the language of classical first-order
logic (see, e.g., [7]). We start by defining some basic concepts before briefly
describing the matrix characterisation for classical and intuitionistic logic.

2.1 Formula Trees, Types and Multiplicities

Some basic concepts are formula trees, types and multiplicities (see [4, 7, 30]).
Multiplicities encode the contraction rule in the sequent calculus [8].

Definition 1 (Formula Tree). A formula tree is the graphical representation
of a formula F as a tree. Each node is labeled with a connective/quantifier or
atomic subformula of F and marked with a unique name, its position, denoted
by a0, a1, . . . . The set of all positions is denoted by Pos. The tree ordering
< ⊆ Pos × Pos is the (partial) ordering on the positions in the formula tree,
i.e. ai<aj iff position ai is below position aj in the formula tree.

Example 1. Figure 1 shows the formula tree for F1 = ∀xPx⇒Pb∧Pc with
Pos = {a1, . . . , a5}. It is, e.g., a1<a2 and a0<a4. Note that each subformula of a
given formula corresponds to exactly one position in its formula tree, e.g. ∀xPx
corresponds to the position a1.
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Fig. 1. Formula tree for F1 and Fµ
1 with µ(a1) = 2

Definition 2 (Types, Polarity). The principal and intuitionistic type of a
position is determined by its label and polarity according to Table 1 (e.g. a for-
mula/position A∧B with polarity 1 has type α). Atomic positions have no prin-
cipal type and some positions have no intuitionistic type. We denote the sets of
positions of type γ, δ, φ, and ψ by Γ , ∆, Φ, and Ψ , respectively. The polarity
(0 or 1) of a position is determined by the label and polarity of its predecessor
in the formula tree according to table 1 (e.g. if A ∧ B has polarity 1 then both
subformula A and B have polarity 1 as well). The root position has polarity 0.

Example 2. In the left formula tree for F1 in Figure 1 (ignore the additional
branch for now) each node/position is marked with its types and its polarity.
The positions a0, a1, a3 have principal type α, γ and β, respectively; the positions
a1, a2 and a0, a4, a5 have intuitionistic type φ and ψ, respectively.



Table 1. Principal type, intuitionistic type and polarity of positions/subformulae

principal type α (A ∧B)1 (A ∨B)0 (A⇒B)0 (¬A)1 (¬A)0

successor polarity A1, B1 A0, B0 A1, B0 A0 A1

principal type β (A ∧B)0 (A ∨B)1 (A⇒B)1

successor polarity A0, B0 A1, B1 A0, B1

principal type γ (∀xA)1 (∃xA)0

successor polarity A1 A0
principal type δ (∀xA)0 (∃xA)1

successor polarity A0 A1

intuitionistic type φ (¬A)1 (A⇒B)1 (∀xA)1 P 1 (P is atomic)
intuitionistic type ψ (¬A)0 (A⇒B)0 (∀xA)0 P 0 (P is atomic)

Definition 3 (Multiplicity). The multiplicity µ : Γ ∪ Φ → IN assigns each
position of type γ and φ a natural number. By Fµ we denote an indexed formula.
In the formula tree of Fµ multiple instances of subformulae — according to the
multiplicity of its positions — have been considered. The branch instances of a
subformula have an implicit node/position of type α as predecessor.

Example 3. The formula tree for F1 with µ(a1)=2 is shown in Figure 2. Here and
in the following we will replace variables in atomic formulae by their quantifier
positions. Thus positions of type γ and δ appear in atomic formulae.

2.2 Matrix Characterisation for Classical Logic

To resume the characterisation for classical logic [3, 4] we introduce the concepts
of matrices, paths and connections. A path corresponds to a sequent and a
connection to an axiom in the sequent calculus [8]. For the first-order case we
also need the notation of first-order substitution and reduction ordering.

Definition 4 (Matrix,Path,Connection).

1. In the matrix(-representation) of an indexed formula Fµ we place the sub-
formulae of a formula of principal type α side by side whereas subformulae of
a subformula of principal type β are placed one upon the other. Furthermore,
we omit all connectives and quantifiers.

2. A path through an indexed formula Fµ is a subset of the atomic formulae of
its formula tree; it is a horizontal path through the matrix of Fµ.

3. A connection is a pair of atomic formulae with the same predicate symbol
but with different polarities.

Example 4. The matrix for Fµ
1 is given in Figure 2. There are two paths through

Fµ
1 : {P 1a1, P

1a6, P
0b} and {P 1a1, P

1a6, P
0c}. They contain the connections

{P 1a1, P
0b}, {P 1a6, P

0b} and {P 1a1, P
0c}, {P 1a6, P

0c}, respectively. We will
present a more formal definition of matrices and paths in Section 3.[
P 1a1 P 1a6

P 0b

P 0c

] Γ,A `
Γ ` ¬A,∆

Γ,A ` B
Γ ` A⇒B,∆

Γ ` A[x\a]
Γ ` ∀xA,∆

¬-right ⇒-right ∀-right

Fig. 2. Matrix for Fµ
1 and special intuitionistic sequent rules



Definition 5 (First-order Substitution, Reduction Ordering).
1. A first-oder substitution σQ : Γ → T assigns to each position of type γ

a term t∈T . T is the set of terms made up of constants, functions and
elements of Γ and ∆, which are called term variables and term constants,
respectively. A connection {P 0s, P 1t} is said to be σQ-complementary iff
σQ(s)=σQ(t). σQ induces a relation <Q ⊆ ∆ × Γ in the following way: for
all u∈Γ v<Qu holds for all v ∈∆ occurring in σQ(u).

2. The reduction ordering � := (< ∪<Q)+ is the transitive closure of the tree
ordering < and the relation <Q. A first order substitution σQ is said to be
admissible iff the reduction ordering � is irreflexive.

Theorem 1 (Characterisation for Classical Logic [4]). A (first-order) for-
mula F is classically valid, iff there is a multiplicity µ, an admissible first-order
substitution σQ and a set of σQ-complementary connections such that every path
through Fµ contains a connection from this set.

Example 5. Let µ(a1)=2 and σQ={a1\b, a6\c}, i.e. σQ(a1)=b, σQ(a6)=c. σQ is
admissible, since the induced reduction ordering (= tree ordering) is irreflexive.
{{P 1a1, P

0b}, {P 1a6, P
0c}} is a σQ-complementary set of connections and every

path through Fµ
1 contains a connection from this set. Thus F1 is classically valid.

2.3 Matrix Characterisation for Intuitionistic Logic

A few extensions are necessary to adapt the characterisation of classical valid-
ity to intuitionistic logic. These are prefixes and an intuitionistic substitution.
Prefixes encode the characteristics of the special rules (see Figure 2) in the
intuitionistic sequent calculus (see [30]). Alternatively they can be seen as an
encoding of the possible world semantics of intuitionistic logic (see [30]).

Definition 6 (Prefix). Let u1<u2< . . .<un≤u be the positions of type φ or
ψ that dominate the position/formula u in the formula tree. The prefix of u,
denoted pre(u), is a string over Φ ∪ Ψ and defined as pre(u) := u1u2 . . . un.

Example 6. For the formula Fµ
1 we obtain pre(a2)=a0A1A2, pre(a7)= a0A6A7,

pre(a4)=a0a4 and pre(a5)=a0a5. Positions of type φ are written in capitals.

Definition 7 (Intuitionistic/Combined Substitution, Admissibility).
1. An intuitionistic substitution σJ : Φ→ (Φ ∪ Ψ)∗ assigns to each position of

type φ a string over the alphabet (Φ∪Ψ). Elements of Φ and Ψ are called prefix
variables and prefix constants, respectively. σJ induces a relation <J ⊆ Ψ×Φ
in the following way: for all u∈Φ v<Ju holds for all v∈Ψ occurring in σJ(u).

2. A combined substitution σ:=(σQ, σJ) consists of a first-order and an in-
tuitionistic substitution. A connection {P 0s, P 1t} is σ-complementary iff
σQ(s)=σQ(t) and σJ(pre(P 0s))=σJ(pre(P 1t)). The reduction ordering � :=
(< ∪<Q ∪<J)+ is the transitive closure of <, <Q and <J .

3. A combined substitution σ=(σQ, σJ) is said to be admissible iff the reduction
ordering � is irreflexive and the following condition holds for all u∈Γ and
all v ∈∆ occurring in σQ(u): σJ(pre(u))=σJ(pre(v))◦q for some q ∈ (Φ∪Ψ)∗.



Theorem 2 (Characterisation for Intuitionistic Logic [30]). A formula
F is intuitionistically valid, iff there is a multiplicity µ, an admissible combined
substitution σ = (σQ, σJ), and a set of σ-complementary connections such that
every path through Fµ contains a connection from this set.

Example 7. Let µ(a1)=2 and σ = (σQ, σJ) with σQ={a1\b, a6\c} and σJ =
{A1\ε,A2\a4, A6\ε,A7\a5} in which ε denotes the empty string. Then σ is ad-
missible and {{P 1a1, P

0b}, {P 1a6, P
0c}} is a σQ-complementary set of connec-

tions and every path through Fµ
1 contains a connection from this set. Therefore

F1 is intuitionistically valid.

3 Clausal Connection-Based Theorem Proving

This section presents a clausal version of the matrix characterisation for intu-
itionistic logic and a prefixed connection calculus based on this characterisation.

3.1 Prefixed Matrix and Skolemization

In order to develop a prefixed connection calculus more formal definitions of
the concepts of a matrix and paths (as introduced in Definition 4) are required.
Afterwards we will also introduce a Skolemization technique, which extends the
Skolemization used for classical logic to intuitionistic logic.

A (non-clausal, i.e. nested) matrix is a set of clauses and contains α-related
subformulae. A clause is a set of matrices and contains β-related subformulae. A
(non-clausal) matrix is a compact representation of a (classical) formula and can
be represented in the usual two dimensional graphical way. Adding prefixes will
make it suitable to represent intuitionistic formulae as well. The formal definition
of paths through a (matrix of a) formula is adapted accordingly.

Definition 8 (Prefixed Matrix).

1. A prefix p is a string with p∈ (Φ ∪ Ψ)∗. Elements of Φ and Ψ play the role
of variables and constants, respectively. A prefixed (signed) formula F pol:p
is a formula F marked with a polarity pol∈{0, 1} and a prefix p.

2. A prefixed matrix M is a set of clauses in which a clause is a set of prefixed
matrices and prefixed atomic formulae. The prefixed matrix of a prefixed
formula F pol:p is inductively defined according to Table 2. In Table 2 A,B
are formulae, Ps is an atomic formula, p∈ (Φ∪Ψ)∗ is a prefix, Z ∈Φ, a∈Ψ
are new (unused) elements. Ax and Ac is the formula A in which y is replaced
by new (unused) elements x∈Γ and c∈∆, respectively. The prefixed matrix
of a formula F , denoted matrix(F ), is the prefixed matrix of F 0:ε.

Definition 9 (Path). A path through a (prefixed) matrix M or clause C is a
set of prefixed atomic formulae and defined as follows: If M={{P pols:p}} is a
matrix and Ps an atomic formula then {P pols:p} is the only path through M .
Otherwise if M={C1, .., Cn} is a matrix and pathi is a path through the clause
Ci then

⋃n
i=1 pathi is a path through M . If C={M1, ..,Mn} is a clause and pathi

is a path through the matrix Mi then pathi (for 1≤i≤n) is a path through C.



Table 2. The prefixed matrix of a formula F pol:p

Formula Prefixed matrix MA,MB is

F pol:p of F pol:p matrix of

(P 1s):p {{P 1s:p◦Z}}
(P 0s):p {{P 0s:p ◦a}}

(A ∧B)1:p {{MA}, {MB}} A1:p , B1:p
(A ∨B)0:p {{MA}, {MB}} A0:p , B0:p
(A⇒B)0:p {{MA}, {MB}} A1:p , B0:p

(∀yA)1:p MA A1
x:p ◦Z

(∃yA)0:p MA A0
x:p

Formula Prefixed matrix MA,MB is

F pol:p of F pol:p matrix of

(¬A)1:p MA A0:p◦Z
(¬A)0:p MA A1:p ◦a

(A ∧B)0:p {{MA,MB}} A0:p , B0:p
(A ∨B)1:p {{MA,MB}} A1:p , B1:p
(A⇒B)1:p {{MA,MB}} A0:p , B1:p

(∀yA)0:p MA A0
c :p ◦a

(∃yA)1:p MA A1
c :p

Example 8. The prefixed matrix of formula F1 (see examples in Section 2) is
M1=matrix(F1)= {{P 1x1:a2Z3Z4}, {P 0b:a2a5, P

0c:a2a6}}, in which submatri-
ces of the form {{M1, ..,Mn}} have been simplified to M1, ..,Mn. The paths
through M1 are {P 1x1:a2Z3Z4, P

0b:a2a5} and {P 1x1:a2Z3Z4, P
0c:a2a6}.

An indexed formula Fµ is defined in the usual way, i.e. each subformula
F ′ of type γ or φ is assigned its multiplicity µ(F ′)∈ IN encoding the number
of instances to be considered. Before Fµ is translated into a matrix, each F ′

is replaced with (F ′1 ∧ . . . ∧ F ′µ(F ′)) in which F ′i is a copy of F ′. The notation
of σ-complementary is slightly modified, i.e. a connection {P 0s:p, P 1t:q} is σ-
complementary iff σQ(s)=σQ(t) and σJ(p)=σJ(q).

For a combined substitution σ to be admissible (see Definition 7) the reduc-
tion ordering � induced by σ has to be irreflexive. In classical logic this restric-
tion encodes the Eigenvariable condition in the classical sequent calculus [8].
It is usually integrated into the σ-complementary test by using the well-known
Skolemization technique together with the occurs-check of term unification. We
extend this concept to the intuitionistic substitution σJ . To this end we intro-
duce a new substitution σ<, which is induced by the tree ordering <. σ< assigns
to each constant (elements of ∆ and Ψ) a Skolemterm containing all variables
(elements of Γ and Φ) occurring below this constant in the formula tree. It is
sufficient to restrict σ< to these elements, since <J ⊆ Ψ × Φ and <Q ⊆ ∆× Γ .

Definition 10 (σ<-Skolemization). A tree ordering substitution σ< : (∆∪Ψ)
→ T assigns a Skolemterm to every element of ∆ ∪ Ψ . It is induced by the tree
ordering < in the following way: σ< := { c\c(x1, ...xn) | c∈∆ ∪ Ψ and for all
x∈Γ ∪ Φ: (x∈{x1, . . . xn} iff x < c)}.

Example 9. The tree ordering of formula F1 induces the substitution σ< =
{a2\a2(), a5\a5(), a6\a6()}, since no variables occur before any constant.

Note that we follow a purely proof-theoretical view on Skolemization, i.e. as a
way to integrate the irreflexivity test of the reduction ordering into the condition
of σ-complementary. For classical logic this close relationship was pointed out by
Bibel [4]. Like for classical logic the use of Skolemization simplifies proof calculi
and implementations. There is no need for an explicit irreflexivity check and
subformulae/-matrices can be copied by just renaming all their variables.



Lemma 1 (Admissibility Using σ<-Skolemization). Let F be a formula
and < be its tree ordering. A combined substitution σ = (σQ, σJ) is admissible
iff (1) σ′ = σ<∪σQ∪σJ is idempotent, i.e. σ′(σ′) = σ′, and (2) the following
holds for all u∈Γ and all v ∈∆ occurring in σQ(u): σJ(pre(u))=σJ(pre(v))◦q
for some q ∈ (Φ ∪ Ψ)∗.

Proof. It is sufficient to show that � is reflexive iff σ<∪σQ∪σJ is not idempotent.
”⇒”: Let � be reflexive. Then there are positions with a1� . . .�an�a1. For each
ai�aj there is ai<aj, ai<Qaj or ai<Jaj. According to Definition 10, 5 and 7
there is some substitution with {aj\t} in σ<, σQ or σJ , respectively, in which
ai occurs in t. Then σ<∪σQ∪σJ is not idempotent. ”⇐”: Let σ<∪σQ∪σJ be not
idempotent. Then there is σ′={a1\..an.., an\..an−1.., . . . , a2\..a1..}⊆σ<∪σQ∪σJ .
Each {aj\..ai..}∈σ′ is part of σ<, σQ or σJ . According to Definition 10, 5 and
7 it is ai<aj, ai<Qaj or ai<Jaj. Therefore �:=(<∪<Q∪<J)+ is reflexive. 2

3.2 A Clausal Matrix Characterisation

We will now define prefixed matrices in clausal form and adapt the notation of
multiplicities to clausal matrices before presenting a clausal matrix characteri-
sation for intuitionistic logic. The restriction of multiplicities to clauses makes it
possible to use existing clausal calculi for which multiplicities can be increased
during the proof search in an easy way. The transformation of a prefixed matrix
to clausal form is done like for classical logic. Note that we apply the substitution
σ< to the clausal matrix, i.e. to terms and prefixes of atomic formulae.

Definition 11 (Prefixed Clausal Matrix). Let < be a tree ordering and M
be a prefixed matrix. The (prefixed) clausal matrix of M , denoted clausal(M),
is a set of clauses in which each clause is a set of prefixed atomic formu-
lae. It is inductively defined as follows: If M has the form {{P pols:p}} then
clausal(M):=M ; otherwise clausal(M) :=

⋃
C ∈M{{

⋃n
i=1 ci} | ci ∈ clausal(Mi)

and C={M1, . . . , Mn}}. The (prefixed) clausal matrix of a formula F (with tree
ordering <), denoted Mc = matrixc(F ), is σ<(clausal(matrix(F ))).

Definition 12 (Clausal Multiplicity). The clausal multiplicity µc : Mc → IN
assigns each clause in Mc a natural number, specifying the number of clause
instances to be considered. matrixµ

c (F ) denotes the clausal matrix of F in which
clause instances/copies specified by µc have been considered. Term and prefix
variables in clause copies are renamed (Skolemfunctions are not renamed).

Example 10. For F1 let µc({P 1x1:a2()Z3()Z4()}) = 2. Then matrixµ
c (F1) =

{{P 1x1:a2()Z3Z4}, {P 1x7:a2()Z8Z9}, {P 0b:a2()a5(), P 0c:a2()a6()}}.

Note that we use the same Skolemfunction (symbol) for instances of the
same subformula/clause. This is an optimisation, which has a similar effect like
the liberalised δ+-rule for (classical) semantic tableaux [9]. Since we apply the
substitution σ< to the clausal matrix, term and prefix constants can now both
contain term and prefix variables. Therefore the first-order and intuitionistic
substitutions σQ and σJ are extended so that they assign terms over Γ∪∆∪Φ∪Ψ
to term and prefix variables (elements of Γ and Φ).



Theorem 3 (Clausal Characterisation for Intuitionistic Logic). A for-
mula F is intuitionistically valid, iff there is a multiplicity µc, an admissible
combined substitution σ = (σQ, σJ), and a set of σ-complementary connections
such that every path through matrixµ

c (F ) contains a connection from this set.
Proof. Follows directly from the following Lemma 2 and Theorem 2. 2

Lemma 2 (Equivalence of Matrix and Clausal Matrix Proofs). There
is a clausal matrix proof for F iff there is a (non-clausal) matrix proof for F .
Proof. Main idea: paths through clausal matrix and (non-clausal) matrix of F
are identical and substitutions and multiplicities µc/µ can be transfered into each
other. Note that in the following proof ”variable” refers to term and prefix vari-
ables. We assume that σ< is applied to the non-clausal matrix as well.
”⇒”: Let (µc, σ,S) be a clausal matrix proof of F in which S is the connection
set. We will construct a matrix proof (µ, σ′, S′) for F . Let Mc=matrixµ

c (F ) be
the clausal matrix of F (with clause instances according to µc). We construct a
matrix M=matrix(Fµ) in the following way: We start with the original matrix
M . For each clause Ci ∈Mc we identify the vertical path through M which rep-
resents Ci (modulo Skolemfunction names); see matrices on left side of Figure
3. If this vertical path shares variables with already identified clauses in M we
copy the smallest subclause of M , so that the new path contains copies x′1, .., x

′
n

of all (term and prefix) variables x1, .., xn in Ci with σ(xi)6=σ(x′i). Note that
Skolemfunctions in copied subclauses of M are renamed and therefore unique.
The constructed matrix M determines µ. Let σ′:=σ and S ′:=S. We identify ev-
ery connection {P 0s:p, P 1t:q}∈S from Mc as {P 0s′:p′, P 1t′:q′} in M . If s′, t′, p′

or q′ contain a Skolemfunction fi (which is unique in M), we rename Skolem-
functions in σ′ so that σ′(s′, p′)=σ(t′, q′). There can be no renaming conflict for
the set S ′: Let f(x1), f(x2), .. be the same Skolemfunctions in Mc, which are
represented by different Skolemfunctions f1(x1), f2(x2), .. in M . If σ(xi)6=σ(xj)
then different Skolemfunctions do not matter, since fi(xi) and fj(xj) are never
assigned to the same variable. The case σ(xi)=σ(xj) does not occur according
to the construction of M . If copies of the same variable are substituted by the
same term, the branches in the formula tree can be folded up (see right side of
Figure 3); otherwise the branches (and Skolemterms) differ. Every path through
M contains a path from Mc as a subset. Therefore (µ, σ′,S ′) is a proof for F .

MC=matrixµ
C

(F )=..


.
.
.

..f(x′)..

.

.

.

.

.

.

 ..
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Ci

;

M=matrix(F µ)=..


. . .[[

..f1(x)..
][

..f2(x
′)..

.

.

.

]]
.
.
.

 ..


Ci

;

f(x)

x

σ(f(x′))σ(f(x))=

σ(x′)σ(x) =

@
@

�
�

Fig. 3. Clause Ci in (non-)clausal matrix and folding up branches in formula tree

”⇐”: Let (µ, σ′,S ′) be a (non-clausal) matrix proof for F . We will construct
a clausal matrix proof (µc, σ,S). Let M=matrix(Fµ) be the matrix of Fµ. We



construct a clausal matrix Mc=matrixµ
c (F ) in the following way: We start with

the clausal form of the original formula F , i.e. Mc=matrixc(F ). We extend Mc

by using an appropriate µc, so that it is the clausal form of M (modulo Skolem-
function and variable names). Let σ:=σ′ and S:=S ′. We extend σ by unifying all
variables x1, x2, .. in Mc which have the same image in M . Since copied Skolem-
function names in M differ, but are identical in Mc we can simply replace them
with a unique name in σ. Then all connections in S are σ-complementary. By
induction we can also show that every path through Mc contains a connection
from S. Therefore (µc, σ,S) is a clausal proof for F . 2

3.3 A Prefixed Connection Calculus

The clausal characterisation of intuitionistic validity in Theorem 3 serves as a
basis for a proof calculus. Calculating the first-order substitution σQ is done by
the well-known algorithms for term unification (see, e.g., [16]). Checking that
all paths contain a connection can be done by, e.g., sequent calculi [8] tableau
calculi [7] or connection-driven calculi [3, 4, 13, 14]. The clausal connection cal-
culus is successfully used for theorem proving in classical logic (see, e.g., [12]). A
basic version of the connection calculus for first-order classical logic is presented
in [19]. The calculus uses a connection-driven search strategy, i.e. in each step a
connection is identified along an active (sub-)path and only paths not containing
the active path and this connection will be investigated afterwards. The clausal
multiplicity µc is increased dynamically during the path checking process. We
adapt this calculus to deal with intuitionistic logic (based on the clausal charac-
terisation) by adding prefixes to the atomic formulae of each clause as specified
in Definition 8 and 11.

Definition 13 (Prefixed Connection Calculus). The axiom and the rules
of the prefixed connection calculus are given in Figure 3. M is a prefixed clausal
matrix, C,Cp, C1, C

′
2 are clauses of M and Cp is a positive clause (i.e. contains

no atomic formulae with polarity 1), C1∪{L} contains no (term or prefix) vari-
ables, C ′2∪{L′} contains at least one variable and C2/L are copies of C ′2/L′ in
which all variables have been renamed. {L,L} and {L,L′} are σ-complementary
connections, and Path is the active path, which is a subset of some path trough
M . A formula F is valid iff there is an admissible substitution σ = (σQ, σJ) and
a derivation for matrixc(F ) in which all leaves are axioms.

Axiom: Start Rule: Reduction Rule:

({},M, Path)

(Cp,M∪{Cp}, {})
M∪{Cp}

(C,M,Path∪{L})
(C∪{L},M, Path∪{L})

Extension Rule: Extension∗ Rule:

(C,M,Path) (C1,M, Path∪{L})
(C∪{L},M∪{C1∪{L}}, Path)

(C,M,Path) (C2,M∪{C′
2∪{L′}}, Path∪{L})

(C∪{L},M∪{C′
2∪{L′}}, Path)

Fig. 4. The connection calculus for first-order logic



Example 11. Let matrixc(F1)={{P 1x1:a2()Z3Z4},{P 0b:a2()a5(), P 0c:a2()a6()}}
=M be the clausal matrix of F1. The following is a derivation for M .

({},M, {}) ({},M, {P 0c:a2()a6()})
({P 0c:a2()a6()},M, {}) ({},M, {P 0b:a2()a5()})

({P 0b:a2()a5(), P
0c:a2()a6()},M, {})

{{P 1x1:a2()Z3Z4}, {P 0b:a2()a5(), P
0c:a2()a6()}}

Axiom Axiom

Extension∗ Axiom

Extension∗

Start

This derivation is a proof for F1 with the admissible substitution σ=(σQ, σJ) and
σQ={x′1\b, x′′2\c}, σJ={Z ′3\ε, Z ′4\a2()a5(), Z ′′3 \ε, Z ′′4 \a2()a6()}, i.e. F1 is valid.

The intuitionistic substitution σJ can be calculated using the prefix unifica-
tion algorithm in [20]. It calculates a minimal set of most general unifiers for
a given set of prefixes {s1=s1, .., tn=tn} by using a small set of rewriting rules
(similar to the algorithm in [16] for term unification). The following definition
briefly describes this algorithm (see [20] for a detailed introduction).

Definition 14 (Prefix Unification). The prefix unification of two prefixes s
and t is done by applying the rewriting rules defined in Table 3. The rewriting
rules replace a tuple (E, σJ) by a modified tuple (E′, σJ

′) in which E and E′

represent a prefix equation and σJ , σJ
′ are intuitionistic substitutions. Rules are

applied non-deterministically. We start with the tuple ({s= ε|t}, {}), for technical
reasons we divide the right part of t, and stop when the tuple ({}, σJ) is derived.
In this case σJ represents a most general unifier. There can be more than one
most general unifier (see [20]). The algorithm can also be used to calculate a
unifier for a set of prefix equations {s1=t1, .., sn=tn} in a stepwise manner.

We use these symbols: s, t, z ∈ (Φ∪Ψ)∗, s+, t+, z+∈ (Φ∪Ψ)+, X ∈ (Φ∪Ψ), V, V1

V ′ ∈Φ and C,C1, C2 ∈Ψ . V ′ is a new variable which does not refer to a position
in the formula tree and does not occur in the substitution σJ computed so far.

Table 3. Rewriting rules for prefix unification

R1. {ε = ε|ε}, σJ → {}, σJ

R2. {ε = ε|t+}, σJ → {t+ = ε|ε}, σJ

R3. {Xs = ε|Xt}, σJ → {s = ε|t}, σJ

R4. {Cs = ε|V t}, σJ → {V t = ε|Cs}, σJ

R5. {V s = z|ε}, σJ → {s = ε|ε}, {V \z}∪σJ

R6. {V s = ε|C1t}, σJ → {s = ε|C1t}, {V \ε}∪σJ

R7. {V s = z|C1C2t}, σJ → {s = ε|C2t}, {V \zC1}∪σJ

R8. {V s+ = ε|V1t}, σJ → {V1t = V |s+}, σJ (V 6=V1)
R9. {V s+ = z+|V1t}, σJ → {V1t = V ′|s+}, {V \z+V ′}∪σJ (V ′ ∈Φ)
R10. {V s = z|Xt}, σJ → {V s = zX|t}, σJ (s=ε or t 6=ε or X ∈Ψ)

Example 12. In the first step/connection of the proof for F1 we need to unify the
prefixes s = a2Z

′
3Z

′
4 and t = a2a5. This is done as follows: ({a2Z

′
3Z

′
4=ε|a2a5}, {})

R3−→ ({Z ′3Z ′4=ε|a5}, {})
R6−→ ({Z ′4=ε|a5}, {Z ′3\ε})

R10−→ ({Z ′4=a5|ε}, {Z ′3\ε})
R5−→

({ε=ε|ε}, {Z ′3\ε, Z ′4\a5})
R1−→ ({}, {Z ′3\ε, Z ′4\a5}). Note that the second (most

general) unifier can be calculated by using rule R10 instead of R6.



4 An Implementation: ileanCoP

The calculus presented in Section 3 was implemented in Prolog. We will present
details of the implementation and performance results. The source code (and
more information) can be obtained at http://www.leancop.de/ileancop/ .

4.1 The Code

leanCoP is an implementation of the clausal connection calculus presented in
Section 3 for classical first-order logic [19]. The reduction rule is applied before
extension rules are applied and open branches are selected in a depth-first way.
We adapt leanCoP to intuitionistic logic by adding

a. prefixes to atomic formulae and a prefix unification procedure,
b. to each clause the set of term variables contained in it and an admissibility

check in which these sets are used to check condition (2) of Lemma 1.

The main part of the ileanCoP code is depicted in Figure 5. The underlined text
was added to leanCoP; no other changes were done. A prefix Pre is added to
atomic formulae q:Pre in which Pre is a list of prefix variables and constants.
The set of term variables Var is added to each clause Var:Cla in which Var is a
list containing pairs [V,Pre] in which V is a term variable and Pre its prefix.

(1) prove(Mat,PathLim) :-
(2) append(MatA,[FV:Cla|MatB],Mat), \+ member(-( ): ,Cla),
(3) append(MatA,MatB,Mat1),
(4) prove([!:[]],[FV:[-(!):(-[])|Cla]|Mat1],[],PathLim,[PreSet,FreeV]),
(5) check addco(FreeV), prefix unify(PreSet).

(6) prove(Mat,PathLim) :-
(7) \+ ground(Mat), PathLim1 is PathLim+1, prove(Mat,PathLim1).

(8) prove([], , , ,[[],[]]).
(9) prove([Lit:Pre|Cla],Mat,Path,PathLim,[PreSet,FreeV]) :-
(10) (-NegLit=Lit;-Lit=NegLit) ->
(11) ( member(NegL:PreN,Path), unify with occurs check(NegL,NegLit),

(12) \+ \+ prefix unify([Pre=PreN]), PreSet1=[], FreeV3=[]

(13) ;
(14) append(MatA,[Cla1|MatB],Mat), copy term(Cla1,FV:Cla2),
(15) append(ClaA,[NegL:PreN|ClaB],Cla2),
(16) unify with occurs check(NegL,NegLit),
(17) \+ \+ prefix unify([Pre=PreN]),

(18) append(ClaA,ClaB,Cla3),
(19) ( Cla1==FV:Cla2 ->
(20) append(MatB,MatA,Mat1)
(21) ;
(22) length(Path,K), K<PathLim,
(23) append(MatB,[Cla1|MatA],Mat1)
(24) ),
(25) prove(Cla3,Mat1,[Lit:Pre|Path],PathLim,[PreSet1,FreeV1]),
(26) append(FreeV1,FV,FreeV3)

(27) ),
(28) prove(Cla,Mat,Path,PathLim,[PreSet2,FreeV2]),
(29) append([Pre=PreN|PreSet1],PreSet2,PreSet),

(30) append(FreeV2,FreeV3,FreeV).

Fig. 5. Main part of the ileanCoP source code



Condition (2) of the admissibility check, check addco, and the unification
of prefixes, prefix unify, are done after a classical proof, i.e. a set of con-
nections, has been found. Therefore the set of prefix equations PreSet and the
clause-variable sets FreeV are collected in an additional argument of prove.
check addco and prefix unify require 5 and 26 more lines of code, respec-
tively (see [20, 22]). Condition (1) of the admissibility check of Lemma 1 is real-
ized by the occurs-check of Prolog during term unification. Two prefix constants
are considered equal if they can be unified by term unification. Note that we per-
form a weak prefix unification (line 12 and 17) for each connection already during
the path checking process (double negation prevents any variable bindings).

To prove the formula F1 from Section 2 and 3 we call prove(M,1). in which
M= [ [[X,[1^[],Z]]]:[-(p(X)): -([1^[],Z,Y])], []:[p(b):\[1^[],2^[]],p(c):

[1^[],3^[]]] ] is the prefixed matrix of F1 (with clause-variable sets added).

4.2 Refuting some First-Order Formulae

In order to obtain completeness ileanCoP performs iterative deepening on the
proof depth, i.e. the size of the active path. The limit for this size, PathLim, is
increased after the proof search for a given path limit has failed (line 7 in Figure
5). If the matrix contains no variables, the given matrix is refuted.

We will integrate a more restrictive method in which the path limit will
only be increased if the current path limit was actually reached. In this case
the predicate pathlim is written into Prolog’s database indicating the need to
increase the path limit if the proof search fails. It can be realized by modifying
the following lines of the code in Figure 5:

(7) retract(pathlim), PathLim1 is PathLim+1, prove(Mat,PathLim1).

(22) length(Path,K), ( K<PathLim ->

(23a) append(MatB,[Cla1|MatA],Mat1) ;

(23b) \+ pathlim -> assert(pathlim), fail )

The resulting implementation is able to refute a large set of first-order formulae
(but it does not result in a decision procedure for propositional formulae).

4.3 Performance Results

We have tested ileanCoP on all 1337 non-clausal (so-called FOF) problems in
the TPTP library [27] of version 2.7.0 that are classically valid or are not known
to be valid/invalid. The tests were performed on a 3 GHz Xeon system running
Linux and ECLiPSe Prolog version 5.7 (”nodbgcomp.” was used to generate code
without debug information). The time limit for all proof attempts was 300 s.

The results of ileanCoP are listed in the last column of Table 4. We have
also included the results of the following five theorem provers for intuitionistic
first-order logic: JProver [25] (implemented in ML using a non-clausal connec-
tion calculus and prefixes), the Prolog and C versions of ft [24] (using an intu-
itionistic tableau calculus with many additional optimisation techniques and a
contraction-free calculus [6] for propositional formulae), ileanSeP (using an in-
tuitionistic tableau calculus; see http://www.leancop.de/ileansep) and ileanTAP



[22] (using a tableau calculus and prefixes). The timings of the classical provers
Otter [17], leanTAP [1] and leanCoP [19] are provided as well.

Table 4. Performance results of ileanCoP and other provers on the TPTP library

Otter leanTAP leanCoP ileanSeP JProver ftProlog ftC ileanTAP ileanCoP

solved 509 220 335 90 96 112 125 116 234

proved 509 220 335 87 94 99 112 113 188
refuted 0 0 0 3 2 13 13 3 46

0 to <1s 431 202 280 76 80 106 122 110 192
to <10s 54 9 23 8 9 5 1 2 16

to <100s 22 8 29 4 7 1 2 2 17
to <300s 2 1 3 2 0 0 0 2 9

intui. 0.0 - - - 60 76 74 76 76 76
to ≤0.7 - - - 21 20 33 40 34 39
to ≤1.0 - - - 9 0 5 9 6 119

class. 0.0 256 163 227 75 85 92 100 88 175
to ≤1.0 253 57 108 15 11 20 25 28 59

time out 360 1012 944 1173 1237 1171 667 1165 1041
error 468 105 58 74 4 54 545 56 62

Of the 234 problems solved by ileanCoP 112 problems could not be solved by
any other intuitionistic prover. The rating (see rows eight to twelve) expresses
the relative difficulty of the problems from 0.0 (easy) to 1.0 (very difficult). The
intuitionistic rating is taken from the ILTP library [23].

4.4 Analysing Test Runs

The proof search process of ileanCoP can be divided into the following four
sections: transformation into clausal form, search for a ”classical” proof (using
weak prefix unification), admissibility check and prefix unification. We mark the
transition to these sections with the letters a, b and c as follows:

a b c
clausal transformation ”classical”-proof admissibility check prefix unification

Table 5 contains information about how often each section is entered when run-
ning ileanCoP on the 1337 TPTP problems. The numbers assigned to the letters
express the number of times this section is entered. For example the column
a=b=c=1 means that each section is entered just once. The rows var(ø,max)
contain the average and maximum number of variables collected when enter-
ing section b, whereas the rows pre(ø,max) contain the average and maximum
number of prefix equations collected when entering section c.

Most of the problems (178 formulae) have been proved without backtrack-
ing in sections a/b (1st column) or section a (2nd column). This means that
the corresponding classical sequent proofs can be converted into intuitionistic
sequent proofs by simply reordering the rules. Most of the refuted problems (40
formulae) failed because of weak prefix unification in section a (5th column).



Table 5. Analysis of the TPTP test runs

a=b=c=1 a=b=1; c>1 a=1; b,c>1 a=1; b≥1; c=0 a=1; b=c=0 a=b=c=0

proved 159 19 10 - - -
var(ø,max) (13,216) (21,62) (11,23) - - -
pre(ø,max) (29,1191) (22,119) (13,26) - - -

refuted 1 - 3 2 40 -
var(ø,max) (2,2) - (3,5) (5,5) - -
pre(ø,max) (3,3) - (4,4) - - -

time out 3 31 17 2 987 62
var(ø,max) (26,34) (25,106) (41,146) (47,70) - -
pre(ø,max) (15,19) (21,99) (40,112) - - -

For 987 problems no ”classical” proof could be found (5th column). For 62
problems (6th column) the size of the clausal form is too big and the transfor-
mation results in a stack overflow (”error” in Table 4). For 31 problems sections
b and c did not finish after a ”classical” proof has been found (2nd column).

5 Conclusion

We have presented a clausal matrix characterisation for intuitionistic logic based
on the standard characterisation [30] (see also [29]). Encoding the tree-ordering
by an additional substitution replaces the reflexivity test of the reduction order-
ing by checking if the (extended) combined substitution is idempotent. Due to
this Skolemization technique and the transformation into clausal form, multiplic-
ities can be restricted to clauses and clause instances can be generated by just
renaming the term and prefix variables of the original clauses. This allows the
use of existing clausal calculi and implementations for classical logic (in contrast
to specialised calculi [28]), without the redundancy caused by (relational) trans-
lations [18] into classical first-order logic. Instead an additional prefix unification
is added, which captures the specific restrictions of intuitionistic logic, i.e.

first-order logic = propositional logic + term unification ,
intuitionistic logic = classical logic + prefix unification .

We have adapted a clausal connection calculus and transformed the classical
prover leanCoP into the intuitionistic prover ileanCoP with only minor addi-
tions. Experimental results on the TPTP library showed that the performance
of ileanCoP is significantly better than any other (published) automated theorem
prover for intuitionistic first-order logic available today. The correctness proof
provides a way to convert the clausal matrix proofs back into non-clausal matrix
proofs, which can then be converted into sequent-style proofs [26].

While a clausal form technically simplifies the proof search procedure, it has
a negative effect on the size of the resulting clausal form and the search space.
A non-clausal connection-based proof search, which increases multiplicities in a
demand-driven way, would not suffer from this weakness. Whereas the used prefix
unification algorithm is very straightforward to implement, it can be improved
by solving the set of prefix equations in a more simultaneous way. The clausal
characterisation, the clausal connection calculus and the implementation can
be adapted to all modal logics considered within the matrix characterisation



framework [30, 21, 11] by changing the unification rules [20]. By adding tests for
the linear and relevant constraints within the complementary condition it can
even be adapted to fragments of linear logic [10, 11, 15].
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